Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3095–3104 | Cite as

Methanogens in humans: potentially beneficial or harmful for health

  • Prem Prashant Chaudhary
  • Patricia Lynne Conway
  • Jørgen Schlundt


Methanogens are anaerobic prokaryotes from the domain archaea that utilize hydrogen to reduce carbon dioxide, acetate, and a variety of methyl compounds into methane. Earlier believed to inhabit only the extreme environments, these organisms are now reported to be found in various environments including mesophilic habitats and the human body. The biological significance of methanogens for humans has been re-evaluated in the last few decades. Their contribution towards pathogenicity has received much less attention than their bacterial counterparts. In humans, methanogens have been studied in the gastrointestinal tract, mouth, and vagina, and considerable focus has shifted towards elucidating their possible role in the progression of disease conditions in humans. Methanoarchaea are also part of the human skin microbiome and proposed to play a role in ammonia turnover. Compared to hundreds of different bacterial species, the human body harbors only a handful of methanogen species represented by Methanobrevibacter smithii, Methanobrevibacter oralis, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis, Candidatus Methanomassiliicoccus intestinalis, and Candidatus Methanomethylophilus alvus. Their presence in the human gut suggests an indirect correlation with severe diseases of the colon. In this review, we examine the current knowledge about the methanoarchaea in the human body and possible beneficial or less favorable interactions.


Archaea Methanogens Human gut Immune response Microbiome 



The authors are thankful to the NTU Food Technology Centre (NAFTEC), Nanyang Technological University, Singapore, for providing the financial support during this study.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abell GCJ, Conlon MA, McOrist AL (2006) Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration. Microb Ecol Health Dis 18:154–160. CrossRefGoogle Scholar
  2. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS One 4:e7125. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bajaj JS, Gillevet PM, Hylemon PB (2012) Methanogenesis in irritable bowel syndrome: a lot of hot air? Dig Dis Sci 57:3045–3046CrossRefPubMedGoogle Scholar
  4. Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA (2014) The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One 9:e99411. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barbara G, Stanghellini V, Brandi G, Cremon C, Di Nardo G, De Giorgio R, Corinaldesi R (2005) Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 100:2560–2568CrossRefPubMedGoogle Scholar
  6. Borrel G, Harris HMB, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E, Peyret P, Gribaldo S, O’Toole PW, Brugère JF (2012) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194:6944–6945. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borrel G, Harris HMB, Parisot N, Gaci N, Tottey W, Mihajlovski A, Deane J, Gribaldo S, Bardot O, Peyretaillade E, Peyret P, O’Toole PW, Brugère J-F (2013) Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1:e00453-13–e00453-13. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brablcová L, Buriánková I, Badurová P, Chaudhary PP, Rulík M (2015) Methanogenic archaea diversity in hyporheic sediments of a small lowland stream. Anaerobe 32:24–31. CrossRefPubMedGoogle Scholar
  9. Bratten JR, Spanier J, Jones MP (2008) Lactulose breath testing does not discriminate patients with irritable bowel syndrome from healthy controls. Am J Gastroenterol 103:958–963. CrossRefPubMedGoogle Scholar
  10. Brugère JF, Borrel G, Gaci N, Tottey W, O’Toole PW, Malpuech-Brugère C (2014) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5:5–10. CrossRefPubMedGoogle Scholar
  11. Buriánková I, Brablcová L, Mach V, Dvořák P, Chaudhary PP, Rulík M (2013) Identification of methanogenic archaea in the hyporheic sediment of Sitka stream. PLoS One 8:e80804. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R (2011) Moving pictures of the human microbiome. Genome Biol 12:R50. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaudhary PP, Sirohi SK (2009) Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes (Bubalus bubalis). Lett Appl Microbiol 49:274–277. CrossRefPubMedGoogle Scholar
  14. Chaudhary PP, Sirohi SK, Saxena J (2012) Diversity analysis of methanogens in rumen of Bubalus bubalis by 16S riboprinting and sequence analysis. Gene 493:13–17. CrossRefPubMedGoogle Scholar
  15. Chaudhary PP, Wright ADG, Brablcová L, Buriánková I, Bednařík A, Rulík M (2014) Dominance of Methanosarcinales phylotypes and depth-wise distribution of methanogenic community in fresh water sediments of sitka stream from Czech Republic. Curr Microbiol 69:809–816. CrossRefPubMedGoogle Scholar
  16. Chaudhary PP, Rulík M, Blaser M (2017) Is the methanogenic community reflecting the methane emissions of river sediments?—comparison of two study sites. Microbiology 6:e00454. Google Scholar
  17. Conway de Macario E, Macario AJL (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int J Med Microbiol 299:99–108. CrossRefPubMedGoogle Scholar
  18. Czarnowski D, Górski J (1991) Sweat ammonia excretion during submaximal cycling exercise. J Appl Physiol 70:371–374CrossRefPubMedGoogle Scholar
  19. Delong EF (1998) Everything in moderation: archaea as “non-extremophiles”. Curr Opin Genet Dev 8:649–654CrossRefPubMedGoogle Scholar
  20. DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83:460–469. CrossRefPubMedGoogle Scholar
  21. Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov. sp. nov. a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907CrossRefPubMedGoogle Scholar
  23. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ferrari A, Brusa T, Rutili A, Canzi E, Biavati B (1994) Isolation and characterization ofMethanobrevibacter oralis sp. nov. Curr Microbiol 29:7–12CrossRefGoogle Scholar
  25. Fiedorek SC, Pumphrey CL, Casteel HB (1990) Breath methane production in children with constipation and encopresis. J Pediatr Gastroenterol Nutr 10:473–477CrossRefPubMedGoogle Scholar
  26. Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère JF (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20:16062–16078CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goodman AL, Gordon JI (2010) Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab 12:111–116CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159:789–799. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gottlieb K, Wacher V, Sliman J, Pimentel M (2016) Review article: inhibition of methanogenic archaea by statins as targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther 43:197–212. CrossRefPubMedGoogle Scholar
  30. Haines A, Dilawari J, Metz G, Blendis L, Wiggins H (1977) Breath-methane in patients with cancer of the large bowel. Lancet 310:481–483. CrossRefGoogle Scholar
  31. Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J, Zaneveld JR, McDonald DT, Goodrich JA, Heath AC, Knight R, Gordon JI (2011) Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci 108:4599–4606. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci U S A 76:494–498. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hulcr J, Latimer AM, Henley JB, Rountree NR, Fierer N, Lucky A, Lowman MD, Dunn RR (2012) A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS One 7:e47712. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huynh HTT, Pignoly M, Nkamga VD, Drancourt M, Aboudharam G (2015) The repertoire of archaea cultivated from severe periodontitis. PLoS One 10:e0121565. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huynh HTT, Nkamga VD, Signoli M, Tzortzis S, Pinguet R, Audoly G, Aboudharam G, Drancourt M (2016) Restricted diversity of dental calculus methanogens over five centuries, France. Sci Rep 6:25775. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki KI, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov. for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250CrossRefPubMedPubMedCentralGoogle Scholar
  37. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Keppler F, Schiller A, Ehehalt R, Greule M, Hartmann J, Polag D (2016) Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. J Breath Res 10:16003. CrossRefGoogle Scholar
  39. Kontou N, Psaltopoulou T, Soupos N, Polychronopoulos E, Xinopoulos D, Linos A, Panagiotakos DB (2012) Metabolic syndrome and colorectal cancer: the protective role of Mediterranean diet—a case-control study. Angiology 63:390–396. CrossRefPubMedGoogle Scholar
  40. Lecours PB, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, Duchaine C (2014) Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One 9:e87734. CrossRefGoogle Scholar
  41. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic archaea and human periodontal disease. Proc Natl Acad Sci U S A 101:6176–6181. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Levitt MD, Furne JK, Kuskowski M, Ruddy J (2006) Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin Gastroenterol Hepatol 4:123–129CrossRefPubMedGoogle Scholar
  43. Li X, Kolltveit KM, Tronstad L, Olsen I (2000) Systemic diseases caused by oral infection. Clin Microbiol Rev 13:547–558. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li CL, Liu DL, Jiang YT, Zhou YB, Zhang MZ, Jiang W, Liu B, Liang JP (2009) Prevalence and molecular diversity of archaea in subgingival pockets of periodontitis patients. Oral Microbiol Immunol 24:343–346. CrossRefPubMedGoogle Scholar
  45. Lira EAG, Ramiro FS, Chiarelli FM, Dias RR, Feres M, Figueiredo LC, Faveri M (2013) Reduction in prevalence of archaea after periodontal therapy in subjects with generalized aggressive periodontitis. Aust Dent J 58:442–447. CrossRefPubMedGoogle Scholar
  46. Liu TX, Niu HT, Zhang SY (2015) Intestinal microbiota metabolism and atherosclerosis. Chin Med J 128:2805–2811CrossRefPubMedPubMedCentralGoogle Scholar
  47. Loscalzo J (2011) Lipid metabolism by gut microbes and atherosclerosis. Circ Res 109:127–129CrossRefPubMedGoogle Scholar
  48. Lurie-Weinberger MN, Gophna U (2015) Archaea in and on the human body: health implications and future directions. PLoS Pathog 11:e1004833CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mach V, Blaser MB, Claus P, Chaudhary PP, Rulík M (2015) Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka. Front Microbiol 6:506. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mathur R, Barlow GM (2015) Obesity and the microbiome. Expert Rev Gastroenterol Hepatol 9:1087–1099. CrossRefPubMedGoogle Scholar
  51. Mihajlovski A, Alric M, Brugère JF (2008) A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol 159:516–521. CrossRefPubMedGoogle Scholar
  52. Miller TL, Wolin MJ (1983) Stability of Methanobrevibacter smithii populations in the microbial flora excreted from the human large bowel. Appl Environ Microbiol 45:317–318PubMedPubMedCentralGoogle Scholar
  53. Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122. CrossRefPubMedGoogle Scholar
  54. Miller TL, Wolin MJ, De Macario EC, Macario AJL (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232. PubMedPubMedCentralGoogle Scholar
  55. Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier J-C, Dione N, Brah S, Hugon P, Lombard V, Armougom F, Fromonot J, Robert C, Michelle C, Diallo A, Fabre A, Guieu R, Sokhna C, Henrissat B, Parola P, Raoult D (2016) Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep 6:26051. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nasseri-Moghaddam S (2012) Inflammatory bowel disease Siavosh. Middle East J Dig Dis 4(2):77–89PubMedPubMedCentralGoogle Scholar
  57. Nguyen-Hieu T, Khelaifia S, Aboudharam G, Drancourt M (2013) Methanogenic archaea in subgingival sites: a review. APMIS 121:467–477CrossRefPubMedGoogle Scholar
  58. Nottingham PM, Hungate RE (1968) Isolation of methanogenic bacteria from feces of man. J Bacteriol 96:2178–2179PubMedPubMedCentralGoogle Scholar
  59. Oxley APA, Lanfranconi MP, Würdemann D, Ott S, Schreiber S, McGenity TJ, Timmis KN, Nogales B (2010) Halophilic archaea in the human intestinal mucosa. Environ Microbiol 12:2398–2410. CrossRefPubMedGoogle Scholar
  60. Pimentel M, Mayer AG, Park S, Chow EJ, Hasan A, Kong Y (2003) Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig Dis Sci 48:86–92. CrossRefPubMedGoogle Scholar
  61. Pimentel M, Gunsalus RP, Rao SS, Zhang H (2012) Methanogens in human health and disease. Am J Gastroenterol Suppl 1:28–33. CrossRefGoogle Scholar
  62. Polychronopoulos E, Pounis G, Bountziouka V, Zeimbekis A, Tsiligianni I, Qira B-E, Gotsis E, Metallinos G, Lionis C, Panagiotakos D (2010) Dietary meat fats and burden of cardiovascular disease risk factors, in the elderly: a report from the MEDIS study. Lipids Health Dis 9:30. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Probst AJ, Auerbach AK, Moissl-Eichinger C (2013) Archaea on human skin. PLoS One 8:e65388. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C, van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G, Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M, Maguin E, Melo Minardi R, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T, Varela E, de Vos W, Winogradsky Y, Zoetendal E, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rippe JM, Crossley S, Ringer R (1998) Obesity as a chronic disease: modern medical and lifestyle management. J Am Diet Assoc 98:S9–15CrossRefPubMedGoogle Scholar
  66. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci 103:10011–10016. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci 104:10643–10648. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sato K, Kang WH, Saga K, Sato KT (1989) Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 20:537–563. CrossRefPubMedGoogle Scholar
  69. Scanlan PD, Shanahan F, Marchesi JR (2008) Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8:79. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Segal I, Walker a R, Lord S, Cummings JH (1988) Breath methane and large bowel cancer risk in contrasting African populations. Gut 29:608–613. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523:161–166. CrossRefPubMedGoogle Scholar
  72. Triantafyllou K, Chang C, Pimentel M (2014) Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil 20:31–40CrossRefPubMedGoogle Scholar
  73. Vianna ME, Holtgraewe S, Seyfarth I, Conrads G, Horz HP (2008) Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease. J Bacteriol 190:3779–3785. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, Laczny CC, Hugerth LW, Bindl L, Bottu J, Andersson AF, de Beaufort C, Wilmes P (2017) Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front Microbiol 8.
  75. Weaver GA, Krause JA, Miller TL, Wolin MJ (1986) Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 27:698–704. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. PubMedPubMedCentralGoogle Scholar
  79. Yazici C, Arslan DC, Abraham R, Cushing K, Keshavarzian A, Mutlu EA (2016) Breath methane levels are increased among patients with diverticulosis. Dig Dis Sci 61:2648–2654. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Prem Prashant Chaudhary
    • 1
    • 2
  • Patricia Lynne Conway
    • 1
    • 2
    • 3
  • Jørgen Schlundt
    • 1
    • 2
  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological University (NTU)SingaporeSingapore
  2. 2.Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University (NTU)SingaporeSingapore
  3. 3.Centre for Marine Bio-Innovation (CMB), School of Biological, Earth and Environmental Sciences (BEES)The University of New South WalesSydneyAustralia

Personalised recommendations