Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3399–3410 | Cite as

Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China

  • Chenyuan Dang
  • Wen Liu
  • Yaxuan Lin
  • Maosheng Zheng
  • Huan Jiang
  • Qian Chen
  • Jinren Ni
Environmental biotechnology


Surface sediments are the inner source of contaminations in aquatic systems and usually maintain aerobic conditions. As the key participators of nitrification process, little is known about the activities and contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. In this study, we determined the net and potential nitrification rates and used 1-octyne as an AOB specific inhibitor to detect the contributions of AOA and AOB to nitrification in surface sediments of Danjiangkou reservoir, which is the water source area of the middle route of South-to-North Water Diversion Project in China. Quantitative PCR and Illumina high-throughput sequencing were used to evaluate the abundance and diversity of the amoA gene. The net and potential nitrification rates ranged from 0.42 to 1.93 and 2.06 to 8.79 mg N kg−1 dry sediments d−1, respectively. AOB dominated in both net and potential nitrification, whose contribution accounted for 52.7–78.6% and 59.9–88.1%, respectively. The cell-specific ammonia oxidation rate calculation also revealed the cell-specific rates of AOB were higher than that of AOA. The Spearman’s rank correlation analysis suggested that ammonia accumulation led to the AOB predominant role in net nitrification activity, and AOB abundance played the key role in potential nitrification activity. Furthermore, phylogenetic analysis suggested AOB were predominantly characterized by the Nitrosospira cluster, while AOA by the Nitrososphaera and Nitrososphaera sister clusters. This study will help us to better understand the contributions and characteristics of AOA and AOB in aquatic sediments and provide improved strategies for nitrogen control in large reservoirs.


Ammonia-oxidizing archaea Ammonia-oxidizing bacteria Nitrification Sediments Danjiangkou reservoir 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8865_MOESM1_ESM.pdf (79 kb)
ESM 1 (PDF 78 kb)


  1. Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9:1439–1447. CrossRefPubMedGoogle Scholar
  2. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. CrossRefPubMedGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen GY, Qiu SL, Zhou YY (2009) Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu). Res Microbiol 160:173–178. CrossRefPubMedGoogle Scholar
  5. Chen L, Yang Z, Liu H (2016) Assessing the eutrophication risk of the Danjiangkou Reservoir based on the EFDC model. Ecol Eng 96:117–127. CrossRefGoogle Scholar
  6. Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624. CrossRefGoogle Scholar
  7. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. CrossRefPubMedGoogle Scholar
  8. Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fortuna A, Harwood RR, Robertson GP, Fisk JW, Paul EA (2003) Seasonal changes in nitrification potential associated with application of N fertilizer and compost in maize systems of southwest Michigan. Agric Ecosyst Environ 97:285–293. CrossRefGoogle Scholar
  10. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102:14683–14688. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Funes A, de Vicente J, Cruz-Pizarro L, Álvarez-Manzaneda I, de Vicente I (2016) Magnetic microparticles as a new tool for lake restoration: a microcosm experiment for evaluating the impact on phosphorus fluxes and sedimentary phosphorus pools. Water Res 89:366–374. CrossRefPubMedGoogle Scholar
  12. Gächter R, Müller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol Oceanogr 48:929–933. CrossRefGoogle Scholar
  13. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. CrossRefPubMedGoogle Scholar
  14. Gao J, Luo X, Wu G, Li T, Peng Y (2013) Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresour Technol 138:285–296. CrossRefPubMedGoogle Scholar
  15. Giguere AT, Taylor AE, Suwa Y, Myrold DD, Bottomley PJ (2017) Uncoupling of ammonia oxidation from nitrite oxidation: impact upon nitrous oxide production in non-cropped Oregon soils. Soil Biol Biochem 104:30–38. CrossRefGoogle Scholar
  16. Gleeson D, Mathes F, Farrell M, Leopold M (2016) Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Sci Total Environ 571:1407–1418. CrossRefPubMedGoogle Scholar
  17. Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574. CrossRefPubMedGoogle Scholar
  18. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci 105:2134–2139. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hink L, Nicol GW, Prosser JI (2017) Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ Microbiol 19:4829–4837. CrossRefPubMedGoogle Scholar
  20. Hou J, Song C, Cao X, Zhou Y (2013) Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res 47:2285–2296. CrossRefPubMedGoogle Scholar
  21. Huang K, Xia H, Cui G, Li F (2017) Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci Total Environ 578:337–345. CrossRefPubMedGoogle Scholar
  22. Hyman MR, Wood PM (1985) Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochem J 227:719–725. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jeschke C, Falagán C, Knöller K, Schultze M, Koschorreck M (2013) No nitrification in lakes below pH 3. Environ Sci Technol 47:14018–14023. CrossRefPubMedGoogle Scholar
  24. Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671. CrossRefPubMedGoogle Scholar
  25. Kolde R (2012) Package `pheatmap’. Bioconductor 1–6Google Scholar
  26. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546. CrossRefPubMedGoogle Scholar
  27. Koops HP, Boettcher B, Moller UC, Pommerening-Roeser A, Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria. J Gen Microbiol 137:1689–1699CrossRefGoogle Scholar
  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefPubMedGoogle Scholar
  29. Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci 104:7104–7109. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci 108:15892–15897. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li S, Cheng X, Xu Z, Han H, Zhang Q (2009) Spatial and temporal patterns of the water quality in the Danjiangkou Reservoir, China. Hydrol Sci J 54:124–134. CrossRefGoogle Scholar
  33. Limpiyakorn T, Fürhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P (2013) amoA-encoding archaea in wastewater treatment plants: a review. Appl Microbiol Biotechnol 97:1425–1439. CrossRefPubMedGoogle Scholar
  34. Liu S, Shen L, Lou L, Tian G, Zheng P, Hu B (2013) Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China. Appl Environ Microbiol 79:4065–4071. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu S, Hu B, He Z, Zhang B, Tian G, Zheng P, Fang F (2015) Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 99:8587–8596. CrossRefPubMedGoogle Scholar
  36. Long X, Chen C, Xu Z, He J (2014) Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning. Sci Total Environ 470–471:578–586. CrossRefPubMedGoogle Scholar
  37. Ma F, Li C, Wang X, Yang Z, Sun C, Liang P (2014) A Bayesian method for comprehensive water quality evaluation of the Danjiangkou Reservoir water source area, for the middle route of the South-to-North Water Diversion Project in China. Front Earth Sci 8:242–250. CrossRefGoogle Scholar
  38. Mussmann M, Brito I, Pitcher A, Sinninghe Damste JS, Hatzenpichler R, Richter A, Nielsen JL, Nielsen PH, Muller A, Daims H, Wagner M, Head IM (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci 108:16771–16776. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. CrossRefPubMedGoogle Scholar
  40. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108. CrossRefPubMedGoogle Scholar
  41. Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457. CrossRefPubMedGoogle Scholar
  42. Orihel DM, Schindler DW, Ballard NC, Graham MD, O’Connell DW, Wilson LR, Vinebrooke RD (2015) The “nutrient pump:” iron-poor sediments fuel low nitrogen-to-phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol Oceanogr 60:856–871. CrossRefGoogle Scholar
  43. Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem 96:4–15. CrossRefGoogle Scholar
  44. Ouyang Y, Norton JM, Stark JM (2017) Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol Biochem 113:161–172. CrossRefGoogle Scholar
  45. Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Prosser JI (1990) Autotrophic nitrification in bacteria. Adv Microb Physiol 30:125–181. CrossRefGoogle Scholar
  47. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941. CrossRefPubMedGoogle Scholar
  48. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712. PubMedPubMedCentralGoogle Scholar
  50. Saleh-Lakha S, Shannon KE, Henderson SL, Goyer C, Trevors JT, Zebarth BJ, Burton DL (2009) Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl Environ Microbiol 75:3903–3911. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Santoro AE, Francis CA, De Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079. CrossRefPubMedGoogle Scholar
  52. Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD (2017) Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment plant. ISME J 11:1–16. CrossRefGoogle Scholar
  53. Sun H, Giesy JP, Jin X, Wang J (2017) Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China. Sci Total Environ 586:163–173. CrossRefPubMedGoogle Scholar
  54. Tao R, Wakelin SA, Liang Y, Chu G (2017) Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biol Biochem 114:20–30. CrossRefGoogle Scholar
  55. Taylor AE, Zeglin LH, Wanzek TA, Myrold DD, Bottomley PJ (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6:2024–2032. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ, Myrold DD, Sayavedra-Soto L, Bottomley PJ (2013) Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria. Appl Environ Microbiol 79:6544–6551. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Taylor AE, Taylor K, Tennigkeit B, Palatinszky M, Stieglmeier M, Myrold DD, Schleper C, Wagner M, Bottomley PJ (2015) Inhibitory effects of C2 to C10 1-alkynes on ammonia oxidation in two Nitrososphaera species. Appl Environ Microbiol 81:1942–1948. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364. CrossRefPubMedGoogle Scholar
  59. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci 108:8420–8425. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk H-P, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995. CrossRefPubMedGoogle Scholar
  61. Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am J Sci 296:197–243CrossRefGoogle Scholar
  62. Wang S, Zhu G, Peng Y, Jetten MSM, Yin C (2012) Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environ Sci Technol 46:8834–8842. CrossRefPubMedGoogle Scholar
  63. Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075. CrossRefPubMedGoogle Scholar
  64. Wang Q, Zhang LM, Shen JP, Du S, Han LL, He JZ (2016) Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biol Fertil Soils 52:1163–1171. CrossRefGoogle Scholar
  65. Wang J, Kan J, Zhang X, Xia Z, Zhang X, Qian G, Miao Y, Leng X, Sun J (2017) Archaea dominate the ammonia-oxidizing community in deep-sea sediments of the Eastern Indian Ocean-from the equator to the bay of Bengal. Front Microbiol 8:1–16. Google Scholar
  66. Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang L-M, Offre PR, He J-Z, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci 107:17240–17245. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhang T, Ye L, Tong AHY, Shao MF, Lok S (2011) Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Appl Microbiol Biotechnol 91:1215–1225. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang L-M, Hu H-W, Shen J-P, He J-Z (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045. CrossRefPubMedGoogle Scholar
  70. Zhang Y, Chen L, Sun R, Dai T, Tian J, Wen D (2015) Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China. Appl Microbiol Biotechnol 99:4495–4507. CrossRefPubMedGoogle Scholar
  71. Zhang X, Tang Y, Shi Y, He N, Wen X, Yu Q, Zheng C, Sun X, Qiu W (2016) Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia. Sci Rep 6:32791. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zheng M, Fu HZ, Ho YS (2017) Research trends and hotspots related to ammonia oxidation based on bibliometric analysis. Environ Sci Pollut Res 24:20409–20421. CrossRefGoogle Scholar
  73. Zhou L, Wang S, Zou Y, Xia C, Zhu G (2015) Species, abundance and function of ammonia-oxidizing archaea in inland waters across China. Sci Rep 5:15969. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhou Y, Xu JF, Yin W, Ai L, Fang NF, Tan WF, Yan FL, Shi ZH (2017) Hydrological and environmental controls of the stream nitrate concentration and flux in a small agricultural watershed. J Hydrol 545:355–366. CrossRefGoogle Scholar
  75. Zhu YP, Zhang HP, Chen L, Zhao JF (2008) Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River. Sci Total Environ 406:57–68. CrossRefPubMedGoogle Scholar
  76. Zhu G, Wang S, Wang W, Wang Y, Zhou L, Jiang B, Den Camp HJMO, Risgaard-petersen N, Schwark L, Peng Y, Hefting MM, Jetten MSM, Yin C (2013) Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nat Geosci 6:103–107. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chenyuan Dang
    • 1
  • Wen Liu
    • 1
    • 2
  • Yaxuan Lin
    • 1
  • Maosheng Zheng
    • 3
  • Huan Jiang
    • 1
  • Qian Chen
    • 1
  • Jinren Ni
    • 1
  1. 1.College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of EducationPeking UniversityBeijingPeople’s Republic of China
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Resources and Environmental Research AcademyNorth China Electric Power UniversityBeijingPeople’s Republic of China

Personalised recommendations