Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3217–3228 | Cite as

Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study

  • Chunjuan He
  • Yirui Yang
  • Renfei Zhao
  • Jingyao Qu
  • Lan Jin
  • Lili Lu
  • Li Xu
  • Min Xiao
Biotechnologically relevant enzymes and proteins


Levansucrases, which belong to the glycoside hydrolase family 68 (GH68), synthesize β (2-6)-linked fructan levan with sucrose as substrate. We described the use of a levansucrase (Bl_SacB) from Bacillus licheniformis 8-37-0-1 for catalysis of fructosyl transfer to obtain high levan yield previously. In the present study, six variants (Y246A, N251A, K372A, R369A, R369S, and R369K) were constructed through sequence alignment and structural analysis to explore the synthesis mechanism of Bl_SacB. The selected residues were predicted to localize to the substrate-entering channel of the active cavity and close to or remote from the catalytic triad. The products of these variants ranged from homopolymers levan to fructo-oligosaccharides (FOSs). The primary FOSs were identified through MS and NMR analyses as neolevan-type neokestose [β-d-Fru-(2-6)-α-d-Glc-(1-2)-β-d-Fru], levan-type 6-kestose [β-d-Fru-(2-6)-β-d-Fru-(2-1)-α-d-Glc], and inulin-type 1-kestose [β-d-Fru-(2-1)-β-d-Fru-(2-1)-α-d-Glc]. The mutation at Tyr246 located remote from the catalytic triad led to the production of short-chain oligosaccharides with degree of polymerization (DP) of up to 25. The replaced Arg369 located close to the catalytic triad resulted in either elimination of polysaccharide synthesis or complete change in the dominant linkage of the products. The Michaelis constants (Km) of Y246A, N251A, K372A, and R369K were found to be similar to that of the wild type (WT). However, the turnover number (kcat) and the value of transfructosylation versus hydrolysis activity of the six variants decreased compared with those of the WT. Hence, the residues located on the surface of the substrate-entering channel of Bl_SacB can be critical in product linkage type and/or elongation mechanism.


Levansucrase Transfructosylation Levan Site-directed mutagenesis Fructo-oligosaccharides 


Funding information

This work was partly supported by the National Natural Science Foundation of China (31670062 and 31070064), the Science and Technology Development Project of Shandong Province (2016GGH4502 and 2015GSF121004), and the Fundamental Research Funds of Shandong University (2016JC028).

Compliance with ethical standards

This article does not contain any studies with human and animal participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_8854_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1873 kb)


  1. Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA (2012) Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr Polym 89(2):314–322. CrossRefPubMedGoogle Scholar
  2. Bekers M, Laukevics J, Upite D, Kaminska E, Vigants A, Viesturs U, Pankova L, Danilevics A (2002) Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochem 38(5):701–706. CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. CrossRefPubMedGoogle Scholar
  4. Byun BY, Lee SJ, Mah JH (2014) Antipathogenic activity and preservative effect of levan (β-2, 6-fructan), a multifunctional polysaccharide. Int J Food Sci Technol 49(1):238–245. CrossRefGoogle Scholar
  5. Caputi L, Nepogodiev SA, Malnoy M, Rejzek M, Field RA, Benini S (2013) Biomolecular characterization of the levansucrase of Erwinia amylovora, a promising biocatalyst for the synthesis of fructooligosaccharides. J Agric Food Chem 61(50):12265–12273. CrossRefPubMedGoogle Scholar
  6. Chambert R, Petit-Glatron M (1991) Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 279(1):35–41. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dahech I, Belghith KS, Belghith H, Mejdoub H (2012) Partial purification of a Bacillus licheniformis levansucrase producing levan with antitumor activity. Int J Biol Macromol 51(3):329–335. CrossRefPubMedGoogle Scholar
  8. Gimeno-Pérez M, Linde D, Fernández-Arrojo L, Plou FJ, Fernández-Lobato M (2015) Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Appl Microbiol Biotechnol 99(8):3459–3467. CrossRefPubMedGoogle Scholar
  9. Hendry GAF, Wallace RK (1993) The origin, distribution and evolutionary significance of fructans. In: Suzuki M, Chatterton JN (eds) Science and technology of fructans. CPR Press, Florida, pp 119–139Google Scholar
  10. Homann A, Biedendieck R, Götze S, Jahn D, Seibel J (2007) Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem J 407(2):189–198. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kilian S, Kritzinger S, Rycroft C, Gibson G, Du Preez J (2002) The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol 18(7):637–644. CrossRefGoogle Scholar
  13. Lee SM, Chang JY, Wu JS, Sheu DC (2015) Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep 12(1):1114–1118. CrossRefPubMedGoogle Scholar
  14. Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol 101(14):5528–5533. CrossRefPubMedGoogle Scholar
  15. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495. CrossRefPubMedGoogle Scholar
  16. Lu L, Fu F, Zhao R, Jin L, He C, Xu L, Xiao M (2014) A recombinant levansucrase from Bacillus licheniformis 8-37-0-1 catalyzes versatile transfructosylation reactions. Process Biochem 49(9):1503–1510. CrossRefGoogle Scholar
  17. Martínez-Fleites C, Ortíz-Lombardía M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, Hernández L, Davies GJ (2005) Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 390(1):19–27. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Marx SP, Winkler S, Hartmeier W (2000) Metabolization of β-(2, 6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol Lett 182(1):163–169. PubMedGoogle Scholar
  19. Meng G, Fütterer K (2003) Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Mol Biol 10(11):935–941. CrossRefGoogle Scholar
  20. Meng G, Fütterer K (2008) Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase. BMC Struct Biol 8(1):16. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Öner ET, Hernández L, Combie J (2016) Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotech Adv 34(5):827–844. CrossRefGoogle Scholar
  22. Ortiz-Soto ME, Rivera M, Rudiño-Piñera E, Olvera C, López-Munguía A (2008) Selected mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its biochemical properties. Protein Eng Des Sel 21(10):589–595. CrossRefPubMedGoogle Scholar
  23. Ozimek LK, Kralj S, Van der Maarel MJ, Dijkhuizen L (2006) The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152(4):1187–1196. CrossRefPubMedGoogle Scholar
  24. Park H-E, Park NH, Kim M-J, Lee TH, Lee HG, Yang J-Y, Cha J (2003) Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzym Microb Technol 32(7):820–827. CrossRefGoogle Scholar
  25. Raga-Carbajal E, Carrillo-Nava E, Costas M, Porras-Dominguez J, López-Munguía A, Olvera C (2016) Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase. Glycobiology 26(4):377–385. CrossRefPubMedGoogle Scholar
  26. Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65(3):315–328. CrossRefPubMedGoogle Scholar
  27. Santos-Moriano P, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2015) Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions. J Mol Catal B Enzym 119:18–25. CrossRefGoogle Scholar
  28. Shih I-L, Yu Y-T, Shieh C-J, Hsieh C-Y (2005) Selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi. J Agric Food Chem 53(21):8211–8215. CrossRefPubMedGoogle Scholar
  29. Strube CP, Homann A, Gamer M, Jahn D, Seibel J, Heinz DW (2011) Polysaccharide synthesis of the levansucrase SacB from Bacillus megaterium is controlled by distinct surface motifs. J Biol Chem 286(20):17593–17600. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tanaka T, Susumu O, Yamamoto T (1980) The molecular structure of low and high molecular weight levans synthesized by levansucrase. J Biochem 87(1):297–303CrossRefPubMedGoogle Scholar
  31. Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66(6):655–663. CrossRefPubMedGoogle Scholar
  32. Trujillo L, Arrieta J, Dafhnis F, Garcıa J, Valdes J, Tambara Y, Pérez M, Hernández L (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzym Microb Technol 28(2):139–144. CrossRefGoogle Scholar
  33. Van Hijum S, Van Der Maarel M, Dijkhuizen L (2003) Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett 534(1–3):207–210. CrossRefPubMedGoogle Scholar
  34. Visnapuu T, Mardo K, Alamaee T (2015) Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo-and polysaccharides. New Biotechnol 32(6):597–605. CrossRefGoogle Scholar
  35. Visnapuu T, Mardo K, Mosoarca C, Zamfir AD, Vigants A, Alamäe T (2011) Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: substrate specificity, polymerizing properties and usage of different acceptors for fructosylation. J Biotechnol 155(3):338–349. CrossRefPubMedGoogle Scholar
  36. Waldherr FW, Meissner D, Vogel RF (2008) Genetic and functional characterization of Lactobacillus panis levansucrase. Arch Microbiol 190(4):497–505. CrossRefPubMedGoogle Scholar
  37. Weijers CA, Franssen MC, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26(5):436–456. CrossRefPubMedGoogle Scholar
  38. Wu JS, Chang JY, Chen CW, Lin MT, Sheu DC, Lee SM (2017) Neokestose suppresses the growth of human melanoma A2058 cells via inhibition of the nuclear factor-κB signaling pathway. Mol Med Rep 16(1):295–300. CrossRefPubMedGoogle Scholar
  39. Wuerges J, Caputi L, Cianci M, Boivin S, Meijers R, Benini S (2015) The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. J Struct Biol 191(3):290–298. CrossRefPubMedGoogle Scholar
  40. Yamamoto S, Iizuka M, Tanaka T, Yamamoto T (1985) The mode of synthesis of levan by Bacillus subtilis levansucrase. Agric Biol Chem 49(2):343–349. Google Scholar
  41. Yanase H, Maeda M, Hagiwara E, Yagi H, Taniguchi K, Okamoto K (2002) Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J Biochem 132(4):565–572. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and GlycobiologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations