Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 8, pp 3497–3511 | Cite as

Biodegradation of dissolved humic substances by fungi

  • Sergio Collado
  • Paula Oulego
  • Octavio Suárez-Iglesias
  • Mario Díaz
Mini-Review
  • 307 Downloads

Abstract

Humic and fulvic acids constitute humic substances, a complex mixture of many different acids containing carboxyl and phenolate groups, which are not only the principal soil fertility factors but also the main pollutants present in landfill leachates or natural organic matter in water. Due to their low bacterial biodegradability, fungal biodegradation processes are key for their removal. The present study compiles and comments all the available literature on decomposition of aqueous humic substances by fungi or by their extracellular enzymes alone, focusing on the influence of the reaction conditions. The biodegradation extent mainly depends on the characteristics and concentration of the humic compounds, the type of microorganisms selected, the inoculation mode, the C and N sources, the presence of certain chemicals in the medium, the availability of oxygen, the temperature, and the pH.

Keywords

Humic substances Humic acid Fulvic acid Fungi Ligninolytic enzymes 

Notes

Acknowledgements

We are grateful to Prof. Dr. José Ramón Álvarez, for his help during the literature search.

Compliance with ethical standards

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_8851_MOESM1_ESM.pdf (293 kb)
ESM 1 (PDF 292 kb)

References

  1. Bajpai P (2012) Biotechnology for pulp and paper processing. Springer Science + Business Media, LLC, New YorkCrossRefGoogle Scholar
  2. Belcarz A, Ginalska G, Kornillowicz-Kowalska T (2005) Extracellular enzyme activities of Bjerkandera adusta R59 soil strain, capable of daunomycin and humic acids degradation. Appl Microbiol Biotechnol 68(5):686–694CrossRefPubMedGoogle Scholar
  3. Bhatnagar A, Sillanpää M (2017) Removal of natural organic matter (NOM) and its constituents from water by adsorption: a review. Chemosphere 166:497–510CrossRefPubMedGoogle Scholar
  4. Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN (2017) Immobilized ligninolytic enzymes: an innovative and environmenal responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659CrossRefPubMedGoogle Scholar
  5. Blondeau R (1989) Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 55(5):1282–1285PubMedPubMedCentralGoogle Scholar
  6. Burges A, Latter P (1960) Decomposition of humic acid by fungi. Nature 186(4722):404–405CrossRefGoogle Scholar
  7. Claus H, Filip Z (1998) Degradation and transformation of aquatic humic substances by laccase-producing fungi Cladosporium cladosporioides and Polyporus versicolor. Acta Hydrochim Hydrobiol 26(3):180–185CrossRefGoogle Scholar
  8. Dehorter B, Blondeau R (1992) Extracellular enzyme activities during humic acid degradation by the white rot fungi Phanerochaete chrysosporium and Trametes versicolor. FEMS Microbiol Lett 94(3):209–215CrossRefGoogle Scholar
  9. Dehorter B, Kontchou CY, Blondeau R (1992) 13C NMR spectroscopic analysis of soil humic acids recovered after incubation with some white rot fungi and actinomycetes. Soil Biol Biochem 24(7):667–673CrossRefGoogle Scholar
  10. Díaz M (2012) Bioprocess engineering. Paraninfo, Madrid (in Spanish)Google Scholar
  11. Elbeyli İY, Palantöken A, Pişkin S, Peksel A, Kuzu H (2006) Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus Phanerochaete chrysosporium. Energy Sources, Part A 28(11):1051–1061CrossRefGoogle Scholar
  12. Fakoussa RM, Frost PJ (1999) In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl Microbiol Biotechnol 52(1):60–65CrossRefGoogle Scholar
  13. Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79:251–262CrossRefPubMedGoogle Scholar
  14. Gao J, Oloibiri V, Chys M, Audenaert W, Decostere B, He Y, Van Langenhove H, Demeestere K, Van Hulle SWH (2015) The present status of landfill leachate treatment and its development trend from a technological point of view. Rev Environ Sci Biotechnol 14(1):93–122CrossRefGoogle Scholar
  15. Gramss G, Ziegenhagen D, Sorge S (1999) Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes. Microb Ecol 37(2):140–151CrossRefPubMedGoogle Scholar
  16. Granit T, Chen Y, Hadar Y (2007) Humic acid bleaching by white-rot fungi isolated from biosolids compost. Soil Biol Biochem 39(5):1040–1046CrossRefGoogle Scholar
  17. Grinhut T, Hadar Y, Chen Y (2007) Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol Rev 21(4):179–189CrossRefGoogle Scholar
  18. Grinhut T, Hertkorn N, Schmitt-Kopplin P, Hadar Y, Chen Y (2011a) Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry. Environ Sci Technol 45(7):2748–2754CrossRefPubMedGoogle Scholar
  19. Grinhut T, Salame TM, Chen Y, Hadar Y (2011b) Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp. Appl Microbiol Biotechnol 91(4):1131–1140CrossRefPubMedGoogle Scholar
  20. Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Rubiyatno ZMMFA, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224(6):1595CrossRefGoogle Scholar
  21. Haider KM, Martin JP (1988) Mineralization of 14C-labelled humic acids and of humic-acid bound 14C-xenobiotics by Phanerochaete chrysosporium. Soil Biol Biochem 20(4):425–429CrossRefGoogle Scholar
  22. Hofrichter M, Fritsche W (1996) Depolymerization of low-rank coal by extracellular fungal enzyme systems. Appl Microbiol Biotechnol 46(3):220–225CrossRefGoogle Scholar
  23. Hofrichter M, Fritsche W (1997a) Depolymerization of low-rank coal by extracellular fungal enzyme systems. III. In vitro depolymerization of coal humic acids by a crude preparation of manganese peroxidase from the white-rot fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47(5):566–571CrossRefGoogle Scholar
  24. Hofrichter M, Fritsche W (1997b) Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47(4):419–424CrossRefGoogle Scholar
  25. Hofrichter M, Scheibner K, Schneegaß I, Ziegenhagen D, Fritsche W (1998) Mineralization of synthetic humic substances by manganese peroxidase from the white-rot fungus Nematoloma frowardii. Appl Microbiol Biotechnol 49(5):584–588CrossRefGoogle Scholar
  26. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM (2016) A critical review on textile wastewater treatments: possible approaches. J Env Manage 182:351–366CrossRefGoogle Scholar
  27. Hurst HM, Burges A, Latter P (1962) Some aspects of the biochemistry of humic acid decomposition by fungi. Phytochemistry 1(4):227–231CrossRefGoogle Scholar
  28. Ikehata K, Buchanan ID, Smith DW (2004) Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Eng Sci 3(1):1–19CrossRefGoogle Scholar
  29. Kabe Y, Osawa T, Ishihara A, Kabe T (2005) Decolorization of coal humic acid by extracellular enzymes produced by white-rot fungi. Coal Prep. (Philadelphia, PA, U.S.) 25(4):211–220CrossRefGoogle Scholar
  30. Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342CrossRefPubMedGoogle Scholar
  31. Khandelwal KC, Gaur AC (1980) Degradation of humic acids, extracted from manure and soil by some streptomycetes and fungi. Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hyg. Abt. 2, Naturwiss.: Allg. Landwirtsch. Tech. Mikrobiol 135(2), 119–122Google Scholar
  32. Kim H-C, Dempsey BA (2013) Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. J Membr Sci 428:190–197CrossRefGoogle Scholar
  33. Kluczek-Turpeinen B, Steffen KT, Tuomela M, Hatakka A, Hofrichter M (2005) Modification of humic acids by the compost-dwelling deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 66(4):443–449CrossRefPubMedGoogle Scholar
  34. Kornillowicz-Kowalska T, Ginalska G, Belcarz A, Iglik H (2008) Decolorization of humic acids and alkaline lignin derivative by an anamorphic Bjerkandera Adusta R59 strain isolated from soil. Pol J Environ Stud 17(6):903–909Google Scholar
  35. Koukol O, Gryndler M, Novák F, Vosátka M (2004) Effect of Chalara longipes on decomposition of humic acids from Picea abies needle litter. Folia Microbiol. (Dordrecht, Neth.) 49(5):574–578CrossRefGoogle Scholar
  36. Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278CrossRefPubMedGoogle Scholar
  37. Kulikova NA, Davidchik VN, Tsvetkova EA, Koroleva OV (2013) Interaction of coal humic acids with fungal laccase. Adv Microbiol. (Irvine, CA, U.S.) 3:145–153CrossRefGoogle Scholar
  38. Mann J (2011) Microbial bioremediation of olive mill wastewater. Ph.D. Thesis. University of Western Sydney Hawkesbury, Richmond, New South Wales, AustraliaGoogle Scholar
  39. Mathur SP (1970) Degradation of soil humus by the fairy ring mushroom. Plant Soil 33(1):717–720CrossRefGoogle Scholar
  40. Mathur SP (1969) Microbial use of podzol Bh fulvic acids. Can J Microbiol 15(7):677–680CrossRefPubMedGoogle Scholar
  41. Mathur SP, Paul EA (1967) Microbial utilization of soil humic acids. Can J Microbiol 13(5):573–580CrossRefPubMedGoogle Scholar
  42. Mathur SP, Paul EA (1966) A microbiological approach to the problem of soil humic acid structures. Nature 212(5062):646–647CrossRefGoogle Scholar
  43. McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527(2):105–124CrossRefGoogle Scholar
  44. McNamara CJ, Anastasiou CC, O'Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeterior Biodegradation 61:127–134CrossRefGoogle Scholar
  45. Mishra B, Srivastava LL (1986) Degradation of humic acid of a forest soil by some fungal isolates. Plant Soil 96(3):413–416CrossRefGoogle Scholar
  46. Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82:25–39CrossRefPubMedGoogle Scholar
  47. Oulego P, Collado S, Laca A, Díaz M (2015) Tertiary treatment of biologically pre-treated landfill leachates by non-catalytic wet oxidation. Chem Eng J 273:647–655CrossRefGoogle Scholar
  48. Oulego P, Collado S, Laca A, Díaz M (2016) Impact of leachate composition on the advanced oxidation treatment. Water Res 88:389–402CrossRefPubMedGoogle Scholar
  49. Pant D, Adholeya A (2007) Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol 98:2321–2334CrossRefPubMedGoogle Scholar
  50. Paul EA, Mathur SP (1967) Cleavage of humic acids by Penicillium frequentans. Plant Soil 27(2):297–299CrossRefGoogle Scholar
  51. Petrovic M, Briski F, Kastelan-Macan M (1993) Biosorption and biodegradation of humic substances by Trichoderma viride. Prehrambeno-technol. Biotechnol Rev 31(4):145–149Google Scholar
  52. Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1):20–33PubMedGoogle Scholar
  53. Ralph JP, Catcheside DEA (1994) Decolourisation and depolymerisation of solubilised low-rank coal by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 42(4):536–542CrossRefGoogle Scholar
  54. Ralph JP, Catcheside DEA (1998a) Influence of culture parameters on extracellular peroxidase activity and transformation of low-rank coal by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 49(4):438–444CrossRefGoogle Scholar
  55. Ralph JP, Catcheside DEA (1998b) Involvement of manganese peroxidase in the transformation of macromolecules from low-rank coal by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 49(6):778–784CrossRefGoogle Scholar
  56. Ralph JP, Catcheside DEA (1999) Transformation of macromolecules from a brown coal by lignin peroxidase. Appl Microbiol Biotechnol 52(1):70–77CrossRefPubMedGoogle Scholar
  57. Ralph JP, Graham LA, Catcheside DEA (1996) Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi. Appl Microbiol Biotechnol 46(3):226–232CrossRefGoogle Scholar
  58. Řezáčová V, Hršelová H, Gryndlerová H, Mikšík I, Gryndler M (2006) Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol Biochem 38(8):2292–2299CrossRefGoogle Scholar
  59. Rodríguez-Couto S (2009) Dye removal by immobilised fungi. Biotechnol Adv 27:227–235CrossRefPubMedGoogle Scholar
  60. Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38:227–268CrossRefGoogle Scholar
  61. Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449CrossRefGoogle Scholar
  62. Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86:481–497CrossRefGoogle Scholar
  63. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol. Rev. 30:112–133CrossRefGoogle Scholar
  64. Senthilkumar S, Perumalsamy M, Janardhana Prabhu H (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18(6):845–853CrossRefGoogle Scholar
  65. Singh H (2006) Mycoremediation: fungal bioremediation. John Wiley & Sons, Inc., Hoboken, New JerseyCrossRefGoogle Scholar
  66. Šnajdr J, Steffen KT, Hofrichter M, Baldrian P (2010) Transformation of 14C-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare. Soil Biol Biochem 42(9):1541–1548CrossRefGoogle Scholar
  67. Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68(7):3442–3448CrossRefPubMedPubMedCentralGoogle Scholar
  68. Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54(6):819–825CrossRefPubMedGoogle Scholar
  69. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley & Sons, New YorkGoogle Scholar
  70. Tan KH (2014) Humic matter in soil and the environment: principles and controversies, 2nd edn. CRC Press, Boca RantonCrossRefGoogle Scholar
  71. Temp U, Meyrahn H, Eggert C (1999) Extracellular phenol oxidase patterns during depolymerization of low-rank coal by three basidiomycetes. Biotechnol Lett 21(4):281–287CrossRefGoogle Scholar
  72. Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212CrossRefPubMedGoogle Scholar
  73. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biothechnol Adv 22:161–187CrossRefGoogle Scholar
  74. Willmann G, Fakoussa RM (1997) Biological bleaching of water-soluble coal macromolecules by a basidiomycete strain. Appl Microbiol Biotechnol 47(2):95–101CrossRefGoogle Scholar
  75. Wondrack L, Szanto M, Wood WA (1989) Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase. Appl Biochem Biotechnol 20(1):765CrossRefGoogle Scholar
  76. Wunderwald U, Kreisel G, Braun M, Schulz M, Jäger C, Hofrichter M (2000) Formation and degradation of a synthetic humic acid derived from 3-fluorocatechol. Appl Microbiol Biotechnol 53(4):441–446CrossRefPubMedGoogle Scholar
  77. Yadav M, Yadav HS (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13(3):309–318CrossRefGoogle Scholar
  78. Yanagi Y, Hamaguchi S, Tamaki H, Suzuki T, Otsuka H, Fujitake N (2003) Relation of chemical properties of soil humic acids to decolorization by white rot fungus Coriolus consors. Soil Sci. Plant Nutr. (Abingdon, U. K.) 49(2):201–206CrossRefGoogle Scholar
  79. Yanagi Y, Tamaki H, Otsuka H, Fujitake N (2002) Comparison of decolorization by microorganisms of humic acids with different 13C-NMR properties. Soil Biol Biochem 34(5):729–731CrossRefGoogle Scholar
  80. Zahmatkesh M, Spanjers H, Toran MJ, Blánquez P, van Lier JB (2016) Bioremoval of humic acid from water by white rot fungi: exploring the removal mechanisms. AMB Express 6(1):118CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zavarzina AG, Leontievsky AA, Golovleva LA, Trofimov SY (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol Biochem 36(2):359–369CrossRefGoogle Scholar
  82. Zhou JL, Banks CJ (1993) Mechanism of humic acid colour removal from natural waters by fungal biomass biosorption. Chemosphere 27(4):607–620CrossRefGoogle Scholar
  83. Ziegenhagen D, Hofrichter M (1998) Degradation of humic acids by manganese peroxidase from the white-rot fungus Clitocybula dusenii. J Basic Microbiol 38(4):289–299CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Environmental EngineeringUniversity of OviedoOviedoSpain

Personalised recommendations