Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3081–3094 | Cite as

The impact of Torulaspora delbrueckii yeast in winemaking



Commercial Saccharomyces strains are usually inoculated to ferment alcoholic beverages due to their ability to convert all fermentable sugars into ethanol. However, modern trends in winemaking have turned toward less known, non-Saccharomyces yeast species. These species perform the first stages of natural spontaneous fermentation and play important roles in wine variety. New alcoholic fermentation trends have begun to consider objectives other than alcohol production to improve flavor diversity. This review explores the influence of the most used and commercialized non-Saccharomyces yeast, Torulaspora delbrueckii, on fermentation quality parameters, such as ethanol, glycerol, volatile acidity, volatile profile, succinic acid, mannoproteins, polysaccharides, color, anthocyanins, amino acids, and sensory perception.


Torulaspora delbrueckii Non-Saccharomyces Volatile compounds Wine Acids Polysaccharides Anthocyanins 


Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alves-Araujo C, Almeida MJ, Sousa MJ, Leao C (2004) Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. FEMS Microbiol Lett 240:7–14. CrossRefPubMedGoogle Scholar
  2. Azzolini M, Fedrizzi B, Tosi E, Finato F, Vagnoli P, Scrinzi C, Zapparoli G (2012) Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. Eur Food Res Technol 235:303–313. CrossRefGoogle Scholar
  3. Azzolini M, Tosi E, Lorenzini M, Finato F, Zapparoli G (2015) Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World J Microbiol Biotechnol 31:277–293. CrossRefPubMedGoogle Scholar
  4. Balikci EK, Tanguler H, Jolly NP, Erten H (2016) Influence of Lachancea thermotoleranson cv. Emir wine fermentation. Yeast 33:313–321. CrossRefPubMedGoogle Scholar
  5. Bañuelos MA, Loira I, Escott C, Del Fresno JM, Morata A, Sanz PD, Otero L, Suárez-Lepe JA (2016) Grape processing by high hydrostatic pressure: effect on use of non-Saccharomyces in must fermentation. Food Bioprocess Technol 9:1769–1778. CrossRefGoogle Scholar
  6. Basso RF, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86:112–120. CrossRefGoogle Scholar
  7. Belda I, Navascués E, Marquina D, Santos A, Calderon F, Benito S (2015) Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl Microbiol Biotechnol 99:1911–1922. CrossRefPubMedGoogle Scholar
  8. Belda I, Navascués E, Marquina D, Santos A, Calderón F, Benito S (2016a) Outlining the influence of non-conventional yeasts in wine ageing over lees. Yeast 33:329–338. CrossRefPubMedGoogle Scholar
  9. Belda I, Ruiz J, Beisert B, Navascués E, Marquina D, Calderón F, Rauhut D, Benito S, Santos A (2017) Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol 257:183–191. CrossRefPubMedGoogle Scholar
  10. Belda I, Ruiz J, Navascués E, Marquina D, Santos A (2016b) Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int J Food Microbiol 225:1–8. CrossRefPubMedGoogle Scholar
  11. Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320. CrossRefPubMedGoogle Scholar
  12. Benito A, Calderon F, Benito S (2017) The combined use of Schizosaccharomyces pombe and Lachancea thermotolerans-effect on the anthocyanin wine composition. Molecules 22:739. CrossRefGoogle Scholar
  13. Benito Á, Calderón F, Benito S (2016a) Combined use of S. pombe and L. thermotolerans in winemaking. Beneficial effects determined through the study of wines’ analytical characteristics. Molecules 21:1744. CrossRefGoogle Scholar
  14. Benito Á, Calderón F, Palomero F, Benito S (2015a) Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to thetraditional malolactic fermentation in red wine production. Molecules 20:9510–9523. CrossRefPubMedGoogle Scholar
  15. Benito Á, Jeffares D, Palomero F, Calderón F, Bai F-Y, Bähler J, Benito S (2016b) Selected Schizosaccharomyces pombe strains have characteristics that are beneficial for winemaking. PLoS One 11:e0151102. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Benito S, Hofmann T, Laier M, Lochbühler B, Schüttler A, Ebert K, Fritsch S, Röcker J, Rauhut D (2015b) Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur Food Res Technol 241:707–717. CrossRefGoogle Scholar
  17. Benito S, Morata A, Palomero F, González MC, Suárez-Lepe JA (2011) Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies. Food Chem 124:15–23. CrossRefGoogle Scholar
  18. Benito S, Palomero F, Morata A, Uthurry C, Suárez-Lepe JA (2009) Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts. Int J Food Microbiol 132:145–152. CrossRefPubMedGoogle Scholar
  19. Bonciani T, Solieri L, De Vero L, Giudici P (2016) Improved wine yeasts by direct mating and selection under stressful fermentative conditions. Eur Food Res Technol 242:899–910. CrossRefGoogle Scholar
  20. Bonestroo MH, de Wit JC, Kusters BJM, Rombouts FM (1993) Inhibition of the growth of yeasts in fermented salads. Int J Food Microbiol 17:311–320. CrossRefPubMedGoogle Scholar
  21. Canonico L, Comitini F, Ciani M (2017) Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains. Int J Food Microbiol 259:7–13. CrossRefPubMedGoogle Scholar
  22. Chen D, Liu S-Q (2016) Impact of simultaneous and sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on non-volatiles and volatiles of lychee wines. LWT Food Sci Technol 65:53–61. CrossRefGoogle Scholar
  23. Chen D, Yap ZY, Liu S-Q (2015) Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation. Int J Food Microbiol 206:45–50. CrossRefPubMedGoogle Scholar
  24. Chen K, Escott C, Loira I, del Fresno JM, Morata A, Tesfaye W, Calderon F, Suárez-Lepe JA, Han S, Benito S (2018) Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: influence on colour, aroma and sensorial properties of young wines. Food Microbiol 69:51–63. CrossRefPubMedGoogle Scholar
  25. Ciani M, Maccarelli F (1998) Oenological properties of non Saccharomyces yeasts associated with winemaking. World J Microbiol Biotechnol 14:199–203. CrossRefGoogle Scholar
  26. Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R (2016) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7:642. PubMedPubMedCentralGoogle Scholar
  27. Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cordero-Bueso G, Esteve-Zarzoso B, Cabellos JM, Gil-Díaz M, Arroyo T (2013) Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.) Eur Food Res Technol 236:193–207. CrossRefGoogle Scholar
  29. Cus F, Jenko M (2013) The influence of yeast strains on the composition and sensory quality of Gewürztraminer wine. Food Technol Biotechnol 51:547–553Google Scholar
  30. Deák T (2008) Handbook of food spoilage yeasts, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  31. Domizio P, Liu Y, Bisson LF, Barile D (2014) Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine. Food Microbiol 43:5–15. CrossRefPubMedGoogle Scholar
  32. Domizio P, Liu Y, Bisson LF, Barile D (2017) Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization. Food Microbiol 61:136–149. CrossRefPubMedGoogle Scholar
  33. Du Plessis H, Du Toit M, Hoff J, Hart R, Ndimba B, Jolly N (2017) Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. South Afr J Enol Vitic 38:46–63. Google Scholar
  34. Dubourdieu D, Tominaga T, Masneuf I, des Gachons CP, Murat ML (2006) The role of yeasts in grape flavor development during fermentation: the example of sauvignon blanc. Am J Enol Vitic 57:81–88Google Scholar
  35. Escribano R, González-Arenzana L, Portu J, Garijo P, López-Alfaro I, López R, Santamaría P, Gutiérrez AR (2018) Aromatic compound production and fermentative behavior within different non-Saccharomyces species and clones. J Appl Microbiol, AcceptedGoogle Scholar
  36. Fedrizzi B, Pardon KH, Sefton MA, Elsey GM, Jeffery DW (2009) First identification of 4-S-glutathionyl-4-methylpentan-2-one, a potential precursor of 4-mercapto-4-methylpentan-2-one, in sauvignon blanc juice. J Agric Food Chem 57:991–995. CrossRefPubMedGoogle Scholar
  37. Fleet GH, Heard GM (1993) Yeasts: growth during fermentation. In: Fleet GH (ed) Wine microbiol biotechnol. Harwood Academic Publishers, Chur, Switzerland, pp 27–54Google Scholar
  38. Fleet G (2006) The commercial and community significance of yeasts in food and beverage production. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, Heidelberg, pp 1–12Google Scholar
  39. Fröhlich-Wyder MT (2003) Yeasts in foods. Beneficial and detrimental aspects. In: Boekhout T, Robert V (eds) Yeasts in food: beneficial and detrimental aspects. Behr’s Verlag, Hamburg, pp 209–237Google Scholar
  40. Gamero A, Quintilla R, Groenewald M, Alkema W, Boekhout T, Hazelwood L (2016) High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiol 60:147–159. CrossRefPubMedGoogle Scholar
  41. García M, Apolinar-Valiente R, Williams P, Esteve-Zarzoso B, Arroyo T, Crespo J, Doco T (2017) Polysaccharides and oligosaccharides produced on malvar wines elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. “vinos de madrid”. J Agric Food Chem 65:6656–6664. CrossRefPubMedGoogle Scholar
  42. Gonzalez-Ramos D, Cebollero E, Gonzalez R (2008) A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze. Appl Environ Microbiol 74:5533–5540. CrossRefPubMedPubMedCentralGoogle Scholar
  43. González-Royo E, Pascual O, Kontoudakis N, Esteruelas M, Esteve-Zarzoso B, Mas A, Canals JM, Zamora F (2015) Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur Food Res Technol 240:999–1012. CrossRefGoogle Scholar
  44. Jolly N, Augustyn O, Pretorius I (2003a) The use of Candida pulcherrima in combination with Saccharomyces cerevisiae for the production of Chenin blanc wine. South Afr J Enol Vitic 24:63–69. Google Scholar
  45. Jolly NP, Augustyn OPH, Pretorius IS (2003b) The effect of non-Saccharomyces yeasts on fermentation and wine quality. South Afr J Enol Vitic 24:55–62. Google Scholar
  46. Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomycesyeasts in wine production uncovered. FEMS Yeast Res 14:215–237. CrossRefPubMedGoogle Scholar
  47. Kurtzman CP (2011) Torulaspora lindner (1904). In: Kurtzman C, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 867–874Google Scholar
  48. Loira I, Vejarano R, Bañuelos MA, Morata A, Tesfaye W, Uthurry C, Villa A, Cintora I, Suárez-Lepe JA (2014) Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. LWT Food Sci Technol 59:915–922. CrossRefGoogle Scholar
  49. Lu Y, Chua J-Y, Huang D, Lee P-R, Liu S-Q (2016) Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Appl Microbiol Biotechnol 100:8877–8888. CrossRefPubMedGoogle Scholar
  50. Magyar I, Tóth T (2011) Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol 28:94–100. CrossRefPubMedGoogle Scholar
  51. Medina-Trujillo L, González-Royo E, Sieczkowski N, Heras J, Canals JM, Zamora F (2017) Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the first fermentation on the foaming properties of sparkling wine. Eur Food Res Technol 243:681–688. CrossRefGoogle Scholar
  52. Milanovic V, Ciani M, Oro L, Comitini F (2012) Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation. Microb Cell Factories 11:18. CrossRefGoogle Scholar
  53. Minnaar P, Ntushelo N, Ngqumba Z, Van Breda V, Jolly N (2015) Effect of Torulaspora delbrueckii yeast on the anthocyanin and flavanol concentrations of Cabernet franc and Pinotage wines. South Afr J Enol Vitic 36:50–58Google Scholar
  54. Morales P, Rojas V, Quirós M, Gonzalez R (2015) The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol 99:3993–4003. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ngqumba Z, Ntushelo N, Jolly N, Ximba B, Minnaar P (2017) Effect of Torulaspora delbrueckii yeast treatment on flavanols and phenolic acids of Chenin blanc wines. South Afr J Enol Vitic 38:192–200. Google Scholar
  56. Padilla B, Gil JV, Manzanares P (2016) Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front Microbiol 7:411. PubMedPubMedCentralGoogle Scholar
  57. Petruzzi L, Capozzi V, Berbegal C, Corbo MR, Bevilacqua A, Spano G, Sinigaglia M (2017) Microbial resources and enological significance: opportunities and benefits. Front Microbiol 8:995. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Puertas B, Jiménez MJ, Cantos-Villar E, Cantoral JM, Rodríguez ME (2017) Use of Torulaspora delbrueckii and Saccharomyces cerevisiae in semi-industrial sequential inoculation to improve quality of palomino and chardonnay wines in warm climates. J Appl Microbiol 122:733–746. CrossRefPubMedGoogle Scholar
  59. Ramírez M, Velázquez R, Maqueda M, López-Piñeiro A, Ribas JC (2015) A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus. Front Microbiol 6:983. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ramírez M, Velázquez R, Maqueda M, Zamora E, López-Piñeiro A, Hernández LM (2016) Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Int J Food Microbiol 238:311–319. CrossRefPubMedGoogle Scholar
  61. Renault P, Coulon J, de Revel G, Barbe J-C, Bely M (2015) Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int J Food Microbiol 207:40–48. CrossRefPubMedGoogle Scholar
  62. Renault P, Coulon J, Moine V, Thibon C, Bely M (2016) Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains. Front Microbiol 7:293. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Renault P, Miot-Sertier C, Marullo P, Hernández-Orte P, Lagarrigue L, Lonvaud-Funel A, Bely M (2009) Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry. Int J Food Microbiol 134:201–210. CrossRefPubMedGoogle Scholar
  64. Röcker J, Schmitt M, Pasch L, Ebert K, Grossmann M (2016b) The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem 210:660–670. CrossRefPubMedGoogle Scholar
  65. Röcker J, Strub S, Ebert K, Grossmann M (2016a) Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines. Eur Food Res Technol 242:2051–2070. CrossRefGoogle Scholar
  66. Sadineni V, Kondapalli N, Obulam VSR (2012) Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or Metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Ann Microbiol 62:1353–1360. CrossRefGoogle Scholar
  67. Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón J-J, Ballester J, Vichi S, Guérin-Schneider R, Caixach J, Alexandre H (2012) Yeast–yeast interactions revealed by aromatic profile analysis of sauvignon blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol 32:243–253. CrossRefPubMedGoogle Scholar
  68. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173. CrossRefGoogle Scholar
  69. Swiegers JH, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Microbiol Biotechnol 74:954–960. CrossRefPubMedGoogle Scholar
  70. Taillandier P, Lai QP, Julien-Ortiz A, Brandam C (2014) Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content. World J Microbiol Biotechnol 30:1959–1967. CrossRefPubMedGoogle Scholar
  71. Tominaga T, Masneuf I, Dubourdieu D (1996) Mise en evidence d'un S-conjugue de la cysteine, precurseur d'arome du Sauvignon [4-methyl-4-mercaptopentan-2-one; betalyase]. J Int Sci Vigne Vin 29:227–232Google Scholar
  72. Varela C (2016) The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 100:9861–9874. CrossRefPubMedGoogle Scholar
  73. Varela C, Sengler F, Solomon M, Curtin C (2016) Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 209:57–64. CrossRefPubMedGoogle Scholar
  74. Velazquez R, Zamora E, Alvarez ML, Hernandez LM, Ramirez M (2015) Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine. Front Microbiol 6:1222. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Villalba ML, Susana Sáez J, del Monaco S, Lopes CA, Sangorrín MP (2016) TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int J Food Microbiol 217:94–100. CrossRefPubMedGoogle Scholar
  76. Visintin S, Ramos L, Batista N, Dolci P, Schwan F, Cocolin L (2017) Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. Int J Food Microbiol 257:31–40. CrossRefPubMedGoogle Scholar
  77. Wang C, Mas A, Esteve-Zarzoso B (2016) The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific. Front Microbiol 7:502. PubMedPubMedCentralGoogle Scholar
  78. Whitener MEB, Stanstrup J, Carlin S, Divol B, Du Toit M, Vrhovsek U (2017) Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Aust J Grape Wine Res 23:179–192. CrossRefGoogle Scholar
  79. Zott K, Thibon C, Bely M, Lonvaud-Funel A, Dubourdieu D, Masneuf-Pomarede I (2011) The grape must non-Saccharomyces microbial community: impact on volatile thiol release. Int J Food Microbiol 151:210–215. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Food TechnologyPolytechnic University of MadridMadridSpain

Personalised recommendations