Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3037–3048 | Cite as

Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding

  • Kazuaki Matsui
  • Ginro Endo
Mini-Review
  • 216 Downloads

Abstract

Mercury-resistant (HgR) bacteria occur in various bacterial species from a wide variety of environmental sources. Resistance is conferred by a set of operon genes termed the mer operon. Many HgR bacteria have been isolated from diverse environments and clinical samples, and it is recognized that mer operons are often localized on transposons. Previous research reports have suggested that HgR transposons participate in the horizontal gene transfer of mer operons among bacteria. This was confirmed by a study that found that mer operons were distributed worldwide in Bacilli with dissemination of TnMERI1-like transposons. In this mini review, possible strategies for transposon-mediated in situ molecular breeding (ISMoB) of HgR bacteria in their natural habitat are discussed. In ISMoB, the target microorganisms for breeding are indigenous bacteria that are not HgR but that are dominant and robust in their respective environments. Additionally, we propose a new concept of bioremediation technology for environmental mercury pollution by applying transposon-mediated ISMoB for environmental mercury pollution control.

Keywords

Bacilli Bioremediation of environmental mercury pollution Dissemination of mercury resistance genes Mercury resistance transposon Transposon-mediated in situ molecular breeding 

Notes

Acknowledgements

The authors thank and acknowledge Prof. Simon Silver, Prof. Nigel Brown, Prof. John Hobman, Dr. Elena Bogdanova, Dr. Chieh Chen Huang, and Dr. Masaru Narita for their kind collaboration and cooperation while performing transposon-mediated ISMoB research for mercury bioremediation.

Funding information

This work was supported by JSPS KAKENHI (Grant Number: 16K07529).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amin A, Latif Z (2017) Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J Basic Microbiol 57:204–217.  https://doi.org/10.1002/jobm.201600352 CrossRefPubMedGoogle Scholar
  2. Baldi F, Marchetto D, Gallo M, Fani R, Maida I, Covelli S, Fajon V, Zizek S, Hines M, Horvat M (2012) Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community. Estuar Coast Shelf Sci 113:96–104.  https://doi.org/10.1016/j.ecss.2012.04.017 CrossRefGoogle Scholar
  3. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384.  https://doi.org/10.1016/s0168-6445(03)00046-9 CrossRefPubMedGoogle Scholar
  4. Begley TP, Walts AE, Walsh CT (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme-bacterial organomercurial lyase. Biochemistry-US 25:7192–7200.  https://doi.org/10.1021/bi00370a064 CrossRefGoogle Scholar
  5. Bellanger X, Payot S, Leblond-Bourget N, Guedon G (2014) Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 38:720–760.  https://doi.org/10.1111/1574-6976.12058 CrossRefPubMedGoogle Scholar
  6. Bogdanova ES, Mindlin SZ (1991) Occurrence of 2 structural types of mercury reductases among gram-positive bacteria. FEMS Microbiol Lett 78:277–280CrossRefGoogle Scholar
  7. Bogdanova ES, Bass IA, Minakhin LS, Petrova MA, Mindlin SZ, Volodin AA, Kalyaeva ES, Tiedje JM, Hobman JL, Brown NL, Nikiforov VG (1998) Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiology-UK 144:609–620CrossRefGoogle Scholar
  8. Bogdanova E, Minakhin L, Bass I, Volodin A, Hobman JL, Nikiforov V (2001) Class II broad-spectrum mercury resistance transposons in gram-positive bacteria from natural environments. Res Microbiol 152:503–514CrossRefPubMedGoogle Scholar
  9. Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280.  https://doi.org/10.5194/acp-9-9263-2009 CrossRefGoogle Scholar
  10. Burrus V, Pavlovic G, Decaris B, Guedon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610.  https://doi.org/10.1046/j.1365-2958.2002.03191.x CrossRefPubMedGoogle Scholar
  11. Chien MF, Huang CC, Kusano T, Endo G (2008) Facilities for transcription and mobilization of an exon-less bacterial group II intron nested in transposon TnMERI1. Gene 408:164–171.  https://doi.org/10.1016/j.gene.2007.10.032 CrossRefPubMedGoogle Scholar
  12. Cunningham JJ, Kinner NE, Lewis M (2009) Protistan predation affects trichloroethene biodegradation in a bedrock aquifer. Appl Environ Microbiol 75:7588–7593.  https://doi.org/10.1128/aem.01820-09 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21:2642–2653.  https://doi.org/10.1007/s11356-013-2206-8 CrossRefGoogle Scholar
  14. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275.  https://doi.org/10.1016/j.mib.2005.04.011 CrossRefPubMedGoogle Scholar
  15. Figueiredo NL, Canario J, O'Driscoll NJ, Duarte A, Carvalho C (2016) Aerobic mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicol Environ Saf 124:60–67.  https://doi.org/10.1016/j.ecoenv.2015.10.001 CrossRefPubMedGoogle Scholar
  16. Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.01966
  17. Grinsted J, Delacruz F, Schmitt R (1990) The Tn21 subgroup of bacterial transposable elements. Plasmid 24:163–189.  https://doi.org/10.1016/0147-619x(90)90001-s CrossRefPubMedGoogle Scholar
  18. Gupta A, Phung LT, Chakravarty L, Silver S (1999) Mercury resistance in Bacillus cereus RC607: transcriptional organization and two new open reading frames. J Bacteriol 181:7080–7086PubMedPubMedCentralGoogle Scholar
  19. Harada M (1995) Minamata disease—methylmercury poisoning in Japan caused by environmental-pollution. Crit Rev Toxicol 25:1–24.  https://doi.org/10.3109/10408449509089885 CrossRefPubMedGoogle Scholar
  20. Hart MC, Elliott GN, Osborn AM, Ritchie DA, Strike P (1998) Diversity amongst Bacillus merA genes amplified from mercury resistant isolates and directly from mercury polluted soil. FEMS Microbiol Ecol 27:73–84CrossRefGoogle Scholar
  21. Hobman JL, Brown NL (1997) Bacterial mercury-resistance genes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 34: Mercury and its effects on environment and biology. Marcel Dekker, New York, pp 527–568Google Scholar
  22. Holt RJ, Bruce KD, Strike P (1999) Conservation of transposon structures in soil bacteria. FEMS Microbiol Ecol 30:25–37.  https://doi.org/10.1016/s0168-6496(99)00036-7 CrossRefGoogle Scholar
  23. Huang CC, Narita M, Yamagata T, Endo G (1999a) Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene 239:361–366CrossRefPubMedGoogle Scholar
  24. Huang CC, Narita M, Yamagata T, Itoh Y, Endo G (1999b) Structure analysis of a class II transposon encoding the mercury resistance of the gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234:361–369CrossRefPubMedGoogle Scholar
  25. Hughes KA, Nobbs SJ (2004) Long-term survival of human faecal microorganisms on the Antarctic Peninsula. Antarct Sci 16:293–297.  https://doi.org/10.1017/s095410200400210x CrossRefGoogle Scholar
  26. Ikuma K, Gunsch CK (2013) Successful genetic bioaugmentation with Pseudomonas putida for toluene degradation in soil columns. Environ Chem Lett 11:365–370.  https://doi.org/10.1007/s10311-013-0416-4 CrossRefGoogle Scholar
  27. Kannan SK, Mahadevan S, Krishnamoorthy R (2006) Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India. Arch Microbiol 185:202–211.  https://doi.org/10.1007/s00203-006-0088-6 CrossRefPubMedGoogle Scholar
  28. Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environ Biosaf Res 7:123–149.  https://doi.org/10.1051/ebr:2008014 CrossRefGoogle Scholar
  29. Kiyono M, Pan-Hou H (1999) The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62. J Bacteriol 181:726–730PubMedPubMedCentralGoogle Scholar
  30. Kota S, Borden RC, Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol Ecol 29:179–189CrossRefGoogle Scholar
  31. Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol R 63:507−522Google Scholar
  32. Liebert CA, Watson AL, Summers AO (2000) The quality of merC, a module of the mer mosaic. J Mol Evol 51:607–622CrossRefPubMedGoogle Scholar
  33. Mahler I, Levinson HS, Wang Y, Halvorson HO (1986) Cadmium- and mercury-resistant Bacillus strains from a salt marsh and from Boston Harbor. Appl Environ Microbiol 52:1293–1298PubMedPubMedCentralGoogle Scholar
  34. Matsui K, Narita M, Ishii H, Endo G (2005) Participation of the recA determinant in the transposition of class II transposon mini-TnMERI1. FEMS Microbiol Lett 253:309–314.  https://doi.org/10.1016/j.femsle.2005.09.053 CrossRefPubMedGoogle Scholar
  35. Matsui K, Yoshinami S, Narita M, Chien MF, Phung LT, Silver S, Endo G (2016) Mercury resistance transposons in Bacilli strains from different geographical regions. FEMS Microbiol Lett 363:fnw013.  https://doi.org/10.1093/femsle/fnw013 CrossRefPubMedGoogle Scholar
  36. Medina JAC, Farias JE, Cruz Hernandez AC, Martinez RG, Valdes SS, Silva GH, Jones GH, Campos-Guillen J (2013) Isolation and characterization of mercury resistant Bacillus sp from soils with an extensive history as substrates for mercury extraction in Mexico. Geomicrobiol J 30:454–461.  https://doi.org/10.1080/01490451.2012.705229 CrossRefGoogle Scholar
  37. Mindlin S, Petrova M (2013) Mercury resistance transposons. In: Roberts AP, Mullany P (eds) Bacterial integrative mobile genetic elements. Landes Bioscience, Austin, pp 33–52Google Scholar
  38. Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27:4–16.  https://doi.org/10.1016/0147-619x(92)90002-r CrossRefPubMedGoogle Scholar
  39. Nakamura K, Silver S (1994) Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan. Appl Environ Microbiol 60:4596–4599PubMedPubMedCentralGoogle Scholar
  40. Nakamura K, Fujisaki T, Tamashiro H (1986) Characteristics of Hg-resistant bacteria isolated from Minamata Bay sediment. Environ Res 40:58–67.  https://doi.org/10.1016/s0013-9351(86)80081-0 CrossRefPubMedGoogle Scholar
  41. Nakamura K, Fujisaki T, Shibata Y (1988) Mercury-resistant bacteria in the sediment of Minamata Bay. Nippon Suisan Gakk 54:1359–1363CrossRefGoogle Scholar
  42. Nakamura K, Sakamoto M, Uchiyama H, Yagi O (1990) Organomercurial-volatilizing bacteria in the mercury-polluted sediment of Minamata Bay, Japan. Appl Environ Microbiol 56:304–305PubMedPubMedCentralGoogle Scholar
  43. Narita M, Huang CC, Koizumi T, Endo G (1999) Molecular analysis of merA gene possessed by anaerobic mercury-resistant bacteria isolated from sediment of Minamata Bay. Microbes Environ 14:77–84.  https://doi.org/10.1264/jsme2.14.77 CrossRefGoogle Scholar
  44. Narita M, Chiba K, Nishizawa H, Ishii H, Huang C-C, Kawabata Z, Silver S, Endo G (2003) Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett 223:73–82.  https://doi.org/10.1016/s0378-1097(03)00325-2 CrossRefPubMedGoogle Scholar
  45. Narita M, Matsui K, Huang CC, Kawabata Z, Endo G (2004) Dissemination of TnMERI1-like mercury resistance transposons among Bacillus isolated from worldwide environmental samples. FEMS Microbiol Ecol 48:47–55.  https://doi.org/10.1016/j.femsec.2003.12.011 CrossRefPubMedGoogle Scholar
  46. Nazaret S, Brothier E, Ranjard L (2003) Shifts in diversity and microscale distribution of the adapted bacterial phenotypes due to Hg(II) spiking in soil. Microbial Ecol 45:259–269.  https://doi.org/10.1007/s00248-002-2035-7 CrossRefGoogle Scholar
  47. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol R 64:548−572.  https://doi.org/10.1128/mmbr.64.3.548-572.2000 CrossRefGoogle Scholar
  48. Nicolas E, Lambin M, Dandoy D, Galloy C, Nguyen N, Oger CA, Hallet B (2015) The Tn3-family of replicative transposons. Microbiol Spectr 3.  https://doi.org/10.1128/microbiolspec.MDNA3-0060-2014
  49. Nithya C, Gnanalakshmi B, Pandian SK (2011) Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. Mar Environ Res 71:283–294.  https://doi.org/10.1016/j.marenvres.2011.02.003 CrossRefPubMedGoogle Scholar
  50. Nojiri H, Shintani M, Omori T (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174.  https://doi.org/10.1007/s00253-003-1509-y CrossRefPubMedGoogle Scholar
  51. Nucifora G, Silver S, Misra TK (1989) Down regulation of the mercury resistance operon by the most promoter-distal gene merD. Mol Gen Genet 220:69–72CrossRefPubMedGoogle Scholar
  52. Olson BH, Cayless SM, Ford S, Lester JN (1991) Toxic element contamination and the occurrence of mercury-resistant bacteria in Hg-contaminated soil, sediments, and sludges. Arch Environ Contam Toxicol 20:226–233CrossRefGoogle Scholar
  53. Olukoya DK, Smith SI, Ilori MO (1997) Isolation and characterization of heavy metals resistant bacteria from Lagos Lagoon. Folia Microbiol 42:441–444.  https://doi.org/10.1007/bf02826550 CrossRefGoogle Scholar
  54. Oregaard G, Sorensen SJ (2007) High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA). ISME J 1:453–467.  https://doi.org/10.1038/ismej.2007.56 CrossRefPubMedGoogle Scholar
  55. Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262CrossRefPubMedGoogle Scholar
  56. Rochelle PA, Wetherbee MK, Olson BH (1991) Distribution of DNA-sequences encoding narrow-spectrum and broad-spectrum mercury resistance. Appl Environ Microbiol 57:1581–1589PubMedPubMedCentralGoogle Scholar
  57. Sadhukhan PC, Ghosh S, Chaudhuri J, Ghosh DK, Mandal A (1997) Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta. Environ Pollut 97:71–78.  https://doi.org/10.1016/s0269-7491(97)00068-7 CrossRefPubMedGoogle Scholar
  58. Salyers AA, Shoemaker NB, Stevens AM, Li LY (1995) Conjugative transposons—an unusual and diverse set of integrated gene-transfer elements. Microbiol Rev 59:579–590PubMedPubMedCentralGoogle Scholar
  59. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63.  https://doi.org/10.1146/annurev.environ.051308.084314 CrossRefGoogle Scholar
  60. Shahi A, Ince B, Aydin S, Ince O (2017) Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review. Appl Microbiol Biotechnol 101:4341–4348.  https://doi.org/10.1007/s00253-017-8306-5 CrossRefPubMedGoogle Scholar
  61. Silva A, de Carvalho MAR, de Souza SAL, Dias PMT, da Silva RG, Saramago CSD, Bento CAD, Hofer E (2012) Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol 43:1620–1631CrossRefGoogle Scholar
  62. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefPubMedGoogle Scholar
  63. Silver S, Endo G, Nakamura K (1994) Mercury in the environment and the laboratory. J Jpn Soc Wat Environ 17:234–243Google Scholar
  64. Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9.  https://doi.org/10.1016/j.gene.2011.03.001 CrossRefPubMedGoogle Scholar
  65. Sota M, Endo M, Nitta K, Kawasaki H, Tsuda M (2002) Characterization of a class II defective transposon carrying two haloacetate dehalogenase genes from Delftia acidovorans plasmid pUO1. Appl Environ Microbiol 68:2307–2315.  https://doi.org/10.1128/eam.68.5.2307-2315.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stevenson C, Hall JPJ, Harrison E, Wood AJ, Brockhurst MA (2017) Gene mobility promotes the spread of resistance in bacterial populations. ISME J 11:1930–1932.  https://doi.org/10.1038/ismej.2017.42 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tan HM (1999) Bacterial catabolic transposons. Appl Microbiol Biotechnol 51:1–12CrossRefPubMedGoogle Scholar
  68. Trevors JT (1987) Mercury-resistance and mercuric reductase activity in Chromobacterium, Erwinia, and Bacillus species. Bull Environ Contam Toxicol 38:1070–1075CrossRefPubMedGoogle Scholar
  69. Tsubaki T, Irukayayama K (1977) Minamata disease: methylmercury poisoning in Minamata and Niigata, Japan. Kodansha, Tokyo, 317pGoogle Scholar
  70. Tsuda M, Iino T (1987) Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWWO. Mol Gen Genet 210:270–276.  https://doi.org/10.1007/bf00325693 CrossRefPubMedGoogle Scholar
  71. Tyagi M, da Fonseca MM, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241.  https://doi.org/10.1007/s10532-010-9394-4 CrossRefPubMedGoogle Scholar
  72. Wang Y, Moore M, Levinson HS, Silver S, Walsh C, Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J Bacteriol 171:83–92CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976.  https://doi.org/10.1111/j.1574-6976.2011.00292.x CrossRefPubMedGoogle Scholar
  74. Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472:78–82.  https://doi.org/10.1016/s0014-5793(00)01430-7 CrossRefPubMedGoogle Scholar
  75. Wright MS, Baker-Austin C, Lindell AH, Stepanauskas R, Stokes HW, McArthur JV (2008) Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. ISME J 2:417–428.  https://doi.org/10.1038/ismej.2008.8 CrossRefPubMedGoogle Scholar
  76. Wyndham RC, Nakatsu C, Peel M, Cashore A, Ng J, Szilagyi F (1994) Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system. Appl Environ Microbiol 60:86–93PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringKindai UniversityHigashiosakaJapan
  2. 2.Division of Biotechnology, Institute of Engineering and TechnologyTohoku Gakuin UniversityTagajoJapan

Personalised recommendations