Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 2949–2963 | Cite as

(Some) current concepts in antibacterial drug discovery

  • Lasse van Geelen
  • Dieter Meier
  • Nidja Rehberg
  • Rainer Kalscheuer
Mini-Review

Abstract

The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.

Keywords

Antibiotic Pathogen Endophyte Myxobacteria Marine invertebrate Drug conjugate 

Notes

Funding information

Work in the Kalscheuer laboratory related to this topic is funded by the German Research Foundation (DFG) research training group GRK 2158, the Federal Ministry of Education and Research BMBF (16GW0109), and the Juergen Manchot Foundation (MOI III Graduate School).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Allen JG, Atherton FR, Hall MJ, Hassall CH, Holmes SW, Lambert RW, Nisbet LJ, Ringrose PS (1978) Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 272(5648):56–58PubMedCrossRefGoogle Scholar
  2. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220.  https://doi.org/10.1038/nature10069 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845.  https://doi.org/10.1007/s00253-011-3270-y PubMedCrossRefGoogle Scholar
  4. Aly AH, Debbab A, Proksch P (2013) Fungal endophytes—secret producers of bioactive plant metabolites. Pharmazie 68(7):499–505PubMedGoogle Scholar
  5. Asai T, Chung YM, Sakurai H, Ozeki T, Chang FR, Yamashita K, Oshima Y (2012) Tenuipyrone, a novel skeletal polyketide from the entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers. Org Lett 14(2):513–515.  https://doi.org/10.1021/ol203097b PubMedCrossRefGoogle Scholar
  6. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009.  https://doi.org/10.2147/IJN.S35347 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baer M, Sawa T, Flynn P, Luehrsen K, Martinez D, Wiener-Kronish JP, Yarranton G, Bebbington C (2009) An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun 77(3):1083–1090.  https://doi.org/10.1128/IAI.00815-08 PubMedCrossRefGoogle Scholar
  8. Bai H, You Y, Yan H, Meng J, Xue X, Hou Z, Zhou Y, Ma X, Sang G, Luo X (2012) Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials 33(2):659–667.  https://doi.org/10.1016/j.biomaterials.2011.09.075 PubMedCrossRefGoogle Scholar
  9. Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21(6):768–775.  https://doi.org/10.1016/j.gde.2011.10.001 PubMedCrossRefGoogle Scholar
  10. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625.  https://doi.org/10.1126/science.1099390 PubMedCrossRefGoogle Scholar
  11. Balamurugan P, Hema M, Kaur G, Sridharan V, Prabu PC, Sumana MN, Princy SA (2015) Development of a biofilm inhibitor molecule against multidrug resistant Staphylococcus aureus associated with gestational urinary tract infections. Front Microbiol 6:832.  https://doi.org/10.3389/fmicb.2015.00832 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102(31):11076–11081.  https://doi.org/10.1073/pnas.0504266102 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342.  https://doi.org/10.1128/JB.00975-09 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 8(12):e84220.  https://doi.org/10.1371/journal.pone.0084220 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barth VC Jr, Rodrigues BA, Bonatto GD, Gallo SW, Pagnussatti VE, Ferreira CA, de Oliveira SD (2013) Heterogeneous persister cells formation in Acinetobacter baumannii. PLoS One 8(12):e84361.  https://doi.org/10.1371/journal.pone.0084361 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Huttel S, Harmrolfs K, Stadler M, Muller R (2014) Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew Chem Int Ed Engl 53(52):14605–14609.  https://doi.org/10.1002/anie.201409964 PubMedCrossRefGoogle Scholar
  17. Behnken S, Hertweck C (2012a) Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol 96(1):61–67.  https://doi.org/10.1007/s00253-012-4285-8 PubMedCrossRefGoogle Scholar
  18. Behnken S, Hertweck C (2012b) Cryptic polyketide synthase genes in non-pathogenic Clostridium spp. PLoS One 7(1):e29609.  https://doi.org/10.1371/journal.pone.0029609 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5(1):199–208.  https://doi.org/10.1021/nn1023522 PubMedCrossRefGoogle Scholar
  20. Bigger JW (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244:497–500CrossRefGoogle Scholar
  21. Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9(10):1165–1177.  https://doi.org/10.2217/fmb.14.66 PubMedCrossRefGoogle Scholar
  22. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3(7):619.  https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.Co;2-9 PubMedCrossRefGoogle Scholar
  23. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32.  https://doi.org/10.1038/nrmicro2916 PubMedCrossRefGoogle Scholar
  24. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22.  https://doi.org/10.1016/j.fgb.2010.04.004 PubMedCrossRefGoogle Scholar
  25. Cashel M, Gallant J (1969) Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221(5183):838–841.  https://doi.org/10.1038/221838a0 PubMedCrossRefGoogle Scholar
  26. Chaudhari AA, Ashmore D, Nath SD, Kate K, Dennis V, Singh SR, Owen DR, Palazzo C, Arnold RD, Miller ME, Pillai SR (2016) A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J Nanobiotechnology 14(1):58.  https://doi.org/10.1186/s12951-016-0211-z PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chiriac AI, Kloss F, Kramer J, Vuong C, Hertweck C, Sahl HG (2015) Mode of action of closthioamide: the first member of the polythioamide class of bacterial DNA gyrase inhibitors. J Antimicrob Chemother 70(9):2576–2588.  https://doi.org/10.1093/jac/dkv161 PubMedCrossRefGoogle Scholar
  28. Christiaen SE, Brackman G, Nelis HJ, Coenye T (2011) Isolation and identification of quorum quenching bacteria from environmental samples. J Microbiol Methods 87(2):213–219.  https://doi.org/10.1016/j.mimet.2011.08.002 PubMedCrossRefGoogle Scholar
  29. Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:1.  https://doi.org/10.1038/nmicrobiol.2016.51 CrossRefGoogle Scholar
  30. Cui HF, Vashist SK, Al-Rubeaan K, Luong JH, Sheu FS (2010) Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 23(7):1131–1147.  https://doi.org/10.1021/tx100050h PubMedCrossRefGoogle Scholar
  31. Daletos G, Kalscheuer R, Koliwer-Brandl H, Hartmann R, de Voogd NJ, Wray V, Lin W, Proksch P (2015) Callyaerins from the marine sponge Callyspongia aerizusa: cyclic peptides with antitubercular activity. J Nat Prod 78(8):1910–1925.  https://doi.org/10.1021/acs.jnatprod.5b00266 PubMedCrossRefGoogle Scholar
  32. Daletos G, Ancheeva E, Chaidir C, Kalscheuer R, Proksch P (2016) Antimycobacterial metabolites from marine invertebrates. Arch Pharm (Weinheim) 349(10):763–773.  https://doi.org/10.1002/ardp.201600128 CrossRefGoogle Scholar
  33. Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51(3):341–350PubMedPubMedCentralGoogle Scholar
  34. Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24(4):403–427PubMedCrossRefGoogle Scholar
  35. Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30–38.  https://doi.org/10.1016/j.mib.2006.12.007 PubMedCrossRefGoogle Scholar
  36. DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, Bonnell J, Fleming R, Bezabeh B, Dimasi N, Sellman BR, Hilliard J, Guenther CM, Datta V, Zhao W, Gao C, Yu XQ, Suzich JA, Stover CK (2014) A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med 6(262):262ra155.  https://doi.org/10.1126/scitranslmed.3009655 PubMedCrossRefGoogle Scholar
  37. Donner J, Reck M, Bergmann S, Kirschning A, Muller R, Wagner-Dobler I (2016) The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target. Sci Rep 6:29677.  https://doi.org/10.1038/srep29677 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8(2):e1000317.  https://doi.org/10.1371/journal.pbio.1000317 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Edwards AN, Nawrocki KL, McBride SM (2014) Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82(10):4276–4291.  https://doi.org/10.1128/IAI.02323-14 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Elshaarawy RFM, Mustafa FHA, van Geelen L, Abou-Taleb AEA, Tadros HRZ, Kalscheuer R, Janiak C (2017) Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants: fabrication of high-performance economic and ecofriendly anti-biofouling coatings. Carbohydr Polym 172:352–364.  https://doi.org/10.1016/j.carbpol.2017.05.059 PubMedCrossRefGoogle Scholar
  41. Fardeau S, Dassonville-Klimpt A, Audic N, Sasaki A, Pillon M, Baudrin E, Mullie C, Sonnet P (2014) Synthesis and antibacterial activity of catecholate-ciprofloxacin conjugates. Bioorg Med Chem 22(15):4049–4060.  https://doi.org/10.1016/j.bmc.2014.05.067 PubMedCrossRefGoogle Scholar
  42. Fickel TE, Gilvarg C (1973) Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat New Biol 241(110):161–163PubMedCrossRefGoogle Scholar
  43. Fisher JF, Mobashery S (2016) Endless resistance. Endless antibiotics? Medchemcomm 7(1):37–49.  https://doi.org/10.1039/C5MD00394F PubMedCrossRefGoogle Scholar
  44. Flewelling AJ, Ellsworth KT, Sanford J, Forward E, Johnson JA, Gray CA (2013) Macroalgal endophytes from the Atlantic coast of Canada: a potential source of antibiotic natural products? Microorganisms 1(1):175–187.  https://doi.org/10.3390/microorganisms1010175 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gacek A, Strauss J (2012) The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 95(6):1389–1404.  https://doi.org/10.1007/s00253-012-4208-8 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, Liebeke M, Lalk M, Wolz C (2010) Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect Immun 78(5):1873–1883.  https://doi.org/10.1128/IAI.01439-09 PubMedPubMedCentralCrossRefGoogle Scholar
  47. George EA, Novick RP, Muir TW (2008) Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J Am Chem Soc 130(14):4914–4924.  https://doi.org/10.1021/ja711126e PubMedCrossRefGoogle Scholar
  48. Ghosh M, Miller MJ (1995) Design, synthesis, and biological evaluation of isocyanurate-based antifungal and macrolide antibiotic conjugates: iron transport-mediated drug delivery. Bioorg Med Chem 3(11):1519–1525PubMedCrossRefGoogle Scholar
  49. Gominet M, Slamti L, Gilois N, Rose M, Lereclus D (2001) Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40(4):963–975PubMedCrossRefGoogle Scholar
  50. Gribble GW (2015) Biological activity of recently discovered halogenated marine natural products. Mar Drugs 13(7):4044–4136.  https://doi.org/10.3390/md13074044 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544.  https://doi.org/10.1016/S1359-6446(03)02713-2 PubMedCrossRefGoogle Scholar
  52. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108.  https://doi.org/10.1038/nrmicro821 PubMedCrossRefGoogle Scholar
  53. Han SM, Kim JM, Hong IP, Woo SO, Kim SG, Jang HR, Pak SC (2016) Antibacterial activity and antibiotic-enhancing effects of honeybee venom against methicillin-resistant Staphylococcus aureus. Molecules 21(1).  https://doi.org/10.3390/molecules21010079
  54. Haq IJ, Gardner A, Brodlie M (2016) A multifunctional bispecific antibody against Pseudomonas aeruginosa as a potential therapeutic strategy. Ann Transl Med 4(1):12.  https://doi.org/10.3978/j.issn.2305-5839.2015.10.10 PubMedPubMedCentralGoogle Scholar
  55. Harrison F, Buckling A (2009) Siderophore production and biofilm formation as linked social traits. ISME J 3(5):632–634.  https://doi.org/10.1038/ismej.2009.9 PubMedCrossRefGoogle Scholar
  56. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7(9):654–665.  https://doi.org/10.1038/nrmicro2199 PubMedPubMedCentralCrossRefGoogle Scholar
  57. He F, Mai LH, Garderes J, Hussain A, Erakovic Haber V, Bourguet-Kondracki ML (2017) Major antimicrobial representatives from marine sponges and/or their associated bacteria. Prog Mol Subcell Biol 55:35–89.  https://doi.org/10.1007/978-3-319-51284-6_2 PubMedCrossRefGoogle Scholar
  58. Heinisch L, Wittmann S, Stoiber T, Berg A, Ankel-Fuchs D, Mollmann U (2002) Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds. J Med Chem 45(14):3032–3040PubMedCrossRefGoogle Scholar
  59. Herrmann J, Fayad AA, Muller R (2017) Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 34(2):135–160.  https://doi.org/10.1039/c6np00106h PubMedCrossRefGoogle Scholar
  60. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010a) Antibiotic resistance of bacterial biofilms. Int J Microb Agents 35(4):322–332.  https://doi.org/10.1016/j.ijantimicag.2009.12.011 Google Scholar
  61. Hoiby N, Ciofu O, Bjarnsholt T (2010b) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5(11):1663–1674.  https://doi.org/10.2217/fmb.10.125 PubMedCrossRefGoogle Scholar
  62. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55–65.  https://doi.org/10.4248/ijos11026 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hua L, Cohen TS, Shi Y, Datta V, Hilliard JJ, Tkaczyk C, Suzich J, Stover CK, Sellman BR (2015) MEDI4893* promotes survival and extends the antibiotic treatment window in a Staphylococcus aureus immunocompromised pneumonia model. Antimicrob Agents Chemother 59(8):4526–4532.  https://doi.org/10.1128/AAC.00510-15 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Irie Y, Roberts AEL, Kragh KN, Gordon VD, Hutchison J, Allen RJ, Melaugh G, Bjarnsholt T, West SA, Diggle SP (2017) The Pseudomonas aeruginosa PSL polysaccharide is a social but noncheatable trait in biofilms. MBio 8(3):e00374–e00317.  https://doi.org/10.1128/mBio.00374-17 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jakobsen TH, Warming AN, Vejborg RM, Moscoso JA, Stegger M, Lorenzen F, Rybtke M, Andersen JB, Petersen R, Andersen PS, Nielsen TE, Tolker-Nielsen T, Filloux A, Ingmer H, Givskov M (2017) A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep 7(1):9857.  https://doi.org/10.1038/s41598-017-09886-8 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Janout V, Regen SL (2009) Bioconjugate-based molecular umbrellas. Bioconjug Chem 20(2):183–192.  https://doi.org/10.1021/bc800296g PubMedPubMedCentralCrossRefGoogle Scholar
  67. Janout V, Zhang LH, Staina IV, Di Giorgio C, Regen SL (2001) Molecular umbrella-assisted transport of glutathione across a phospholipid membrane. J Am Chem Soc 123(23):5401–5406PubMedCrossRefGoogle Scholar
  68. Janout V, Jing B, Staina IV, Regen SL (2003) Selective transport of ATP across a phospholipid bilayer by a molecular umbrella. J Am Chem Soc 125(15):4436–4437.  https://doi.org/10.1021/ja0291336 PubMedCrossRefGoogle Scholar
  69. Janout V, Jing B, Regen SL (2005) Molecular umbrella-assisted transport of an oligonucleotide across cholesterol-rich phospholipid bilayers. J Am Chem Soc 127(45):15862–15870.  https://doi.org/10.1021/ja053930x PubMedCrossRefGoogle Scholar
  70. Janout V, Bienvenu C, Schell W, Perfect JR, Regen SL (2014) Molecular umbrella-amphotericin B conjugates. Bioconjug Chem 25(8):1408–1411.  https://doi.org/10.1021/bc500277v PubMedPubMedCentralCrossRefGoogle Scholar
  71. Janout V, Schell WA, Thevenin D, Yu Y, Perfect JR, Regen SL (2015) Taming amphotericin B. Bioconjug Chem 26(10):2021–2024.  https://doi.org/10.1021/acs.bioconjchem.5b00463 PubMedCrossRefGoogle Scholar
  72. Ji C, Miller PA, Miller MJ (2012) Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. J Am Chem Soc 134(24):9898–9901.  https://doi.org/10.1021/ja303446w PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129.  https://doi.org/10.1126/science.1070633 PubMedCrossRefGoogle Scholar
  74. Kim YJ, Kim HJ, Kim GW, Cho K, Takahashi S, Koshino H, Kim WG (2016) Isolation of Coralmycins A and B, potent anti-gram negative compounds from the myxobacteria Corallococcus coralloides M23. J Nat Prod 79(9):2223–2228.  https://doi.org/10.1021/acs.jnatprod.6b00294 PubMedCrossRefGoogle Scholar
  75. de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184.  https://doi.org/10.1371/journal.pmed.1002184 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kubyshkin A, Chegodar D, Katsev A, Petrosyan A, Krivorutchenko Y, Postnikova O (2016) Antimicrobial effects of silver nanoparticles stabilized in solution by sodium alginate. Biochem Mol Biol J 2(2).  https://doi.org/10.21767/2471-8084.100022
  77. Kumar PV, Asthana A, Dutta T, Jain NK (2006) Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 14(8):546–556.  https://doi.org/10.1080/10611860600825159 PubMedCrossRefGoogle Scholar
  78. Kumar PV, Agashe H, Dutta T, Jain NK (2007) PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv 4(1):11–19PubMedCrossRefGoogle Scholar
  79. Kusama T, Tanaka N, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi J (2014) Bromopyrrole alkaloids from a marine sponge Agelas sp. Chem Pharm Bull 62(5):499–503PubMedCrossRefGoogle Scholar
  80. Lebeaux D, Ghigo JM, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3):510–543.  https://doi.org/10.1128/MMBR.00013-14 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Leonard BA, Podbielski A, Hedberg PJ, Dunny GM (1996) Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci U S A 93(1):260–264PubMedPubMedCentralCrossRefGoogle Scholar
  82. Letzel AC, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 15:983.  https://doi.org/10.1186/1471-2164-15-983 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lincke T, Behnken S, Ishida K, Roth M, Hertweck C (2010) Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew Chem 49(11):2011–2013.  https://doi.org/10.1002/anie.200906114 CrossRefGoogle Scholar
  84. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459.  https://doi.org/10.1038/nature14098 PubMedCrossRefGoogle Scholar
  85. Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178.  https://doi.org/10.3389/fcimb.2014.00178 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924.  https://doi.org/10.1021/pr0504079 PubMedCrossRefGoogle Scholar
  87. Ma YM, Liang XA, Zhang HC, Liu R (2016) Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J Agric Food Chem 64(19):3789–3793.  https://doi.org/10.1021/acs.jafc.6b01051 PubMedCrossRefGoogle Scholar
  88. Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A 108(32):13206–13211.  https://doi.org/10.1073/pnas.1100186108 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mao D, Bushin LB, Moon K, Wu Y, Seyedsayamdost MR (2017) Discovery of scmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264. Proc Natl Acad Sci U S A 114(14):E2920–E2928.  https://doi.org/10.1073/pnas.1619529114 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL (2008) Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis 47(12):1526–1533.  https://doi.org/10.1086/593186 PubMedCrossRefGoogle Scholar
  91. Martins J, Vasconcelos V (2015) Cyanobactins from cyanobacteria: current genetic and chemical state of knowledge. Mar Drugs 13(11):6910–6946.  https://doi.org/10.3390/md13116910 PubMedPubMedCentralCrossRefGoogle Scholar
  92. McCune RM, Feldmann FM, Lambert HP, McDermott W (1966a) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 123(3):445–468PubMedPubMedCentralCrossRefGoogle Scholar
  93. McCune RM, Feldmann FM, McDermott W (1966b) Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli. J Exp Med 123(3):469–486PubMedPubMedCentralCrossRefGoogle Scholar
  94. Md-Saleh SR, Chilvers EC, Kerr KG, Milner SJ, Snelling AM, Weber JP, Thomas GH, Duhme-Klair AK, Routledge A (2009) Synthesis of citrate-ciprofloxacin conjugates. Bioorg Med Chem Lett 19(5):1496–1498.  https://doi.org/10.1016/j.bmcl.2009.01.007 PubMedCrossRefGoogle Scholar
  95. Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12(8):4539–4577.  https://doi.org/10.3390/md12084539 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mehiri M, Jing B, Ringhoff D, Janout V, Cassimeris L, Regen SL (2008) Cellular entry and nuclear targeting by a highly anionic molecular umbrella. Bioconjug Chem 19(8):1510–1513.  https://doi.org/10.1021/bc8001826 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Meng J, Feng R, Zheng G, Ge M, Mast Y, Wohlleben W, Gao J, Jiang W, Lu Y (2017) Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches. Synth Syst Biotechnol 2(2):130–136.  https://doi.org/10.1016/j.synbio.2017.06.001 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Michiels JE, Van den Bergh B, Verstraeten N, Michiels J (2016) Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Update 29:76–89.  https://doi.org/10.1016/j.drup.2016.10.002 CrossRefGoogle Scholar
  99. Milner SJ, Seve A, Snelling AM, Thomas GH, Kerr KG, Routledge A, Duhme-Klair AK (2013) Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Org Biomol Chem 11(21):3461–3468.  https://doi.org/10.1039/c3ob40162f PubMedCrossRefGoogle Scholar
  100. Mishra MK, Kotta K, Hali M, Wykes S, Gerard HC, Hudson AP, Whittum-Hudson JA, Kannan RM (2011) PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine 7(6):935–944.  https://doi.org/10.1016/j.nano.2011.04.008 PubMedCrossRefGoogle Scholar
  101. Moker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192(7):1946–1955.  https://doi.org/10.1128/JB.01231-09 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3(11):3707–3713.  https://doi.org/10.1021/nn900904h PubMedCrossRefGoogle Scholar
  103. Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781.  https://doi.org/10.3389/fmicb.2016.00781 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Newkome GR, Moorefield CN, Vögtle F (2002) Dendrimers and dendrons: concepts, syntheses, applications. Wiley-VCH, WeinheimGoogle Scholar
  105. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661.  https://doi.org/10.1021/acs.jnatprod.5b01055 PubMedCrossRefGoogle Scholar
  106. Ng TB, Cheung RC, Wong JH, Bekhit AA, Bekhit Ael D (2015) Antibacterial products of marine organisms. Appl Microbiol Biotechnol 99(10):4145–4173.  https://doi.org/10.1007/s00253-015-6553-x PubMedCrossRefGoogle Scholar
  107. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76(8):2445–2450.  https://doi.org/10.1128/AEM.01754-09 PubMedPubMedCentralCrossRefGoogle Scholar
  108. O’Neill J (2014) Review on antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, London Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf Google Scholar
  109. Ola AR, Thomy D, Lai D, Brotz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76(11):2094–2099.  https://doi.org/10.1021/np400589h PubMedCrossRefGoogle Scholar
  110. Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectrum 4(2).  https://doi.org/10.1128/microbiolspec.VMBF-0022-2015
  111. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33.  https://doi.org/10.1016/j.tim.2004.11.007 PubMedCrossRefGoogle Scholar
  112. Pearce BJ, Naughton AM, Masure HR (1994) Peptide permeases modulate transformation in Streptococcus pneumoniae. Mol Microbiol 12(6):881–892PubMedCrossRefGoogle Scholar
  113. Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW (2012) A review of the scientific evidence for biofilms in wounds. Wound Repair Regen 20(5):647–657.  https://doi.org/10.1111/j.1524-475X.2012.00836.x PubMedCrossRefGoogle Scholar
  114. Perez J, Moraleda-Munoz A, Marcos-Torres FJ, Munoz-Dorado J (2016) Bacterial predation: 75 years and counting! Environ Microbiol 18(3):766–779.  https://doi.org/10.1111/1462-2920.13171 PubMedCrossRefGoogle Scholar
  115. Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13(1):39–50PubMedCrossRefGoogle Scholar
  116. Pontes C, Alves M, Santos C, Ribeiro MH, Goncalves L, Bettencourt AF, Ribeiro IA (2016) Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm 513(1–2):697–708.  https://doi.org/10.1016/j.ijpharm.2016.09.074 PubMedCrossRefGoogle Scholar
  117. Prax M, Mechler L, Weidenmaier C, Bertram R (2016) Glucose augments killing efficiency of Daptomycin challenged Staphylococcus aureus persisters. PLoS One 11(3):e0150907.  https://doi.org/10.1371/journal.pone.0150907 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59(2–3):125–134.  https://doi.org/10.1007/s00253-002-1006-8 PubMedGoogle Scholar
  119. Pu Y, Zhao Z, Li Y, Zou J, Ma Q, Zhao Y, Ke Y, Zhu Y, Chen H, Baker MA, Ge H, Sun Y, Xie XS, Bai F (2016) Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 62(2):284–294.  https://doi.org/10.1016/j.molcel.2016.03.035 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Qayyum S, Khan AU (2016) Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles. IET Nanobiotechnol 10(5):349–357.  https://doi.org/10.1049/iet-nbt.2015.0091 PubMedCrossRefGoogle Scholar
  121. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Agents that inhibit bacterial biofilm formation. Future Med Chem 7(5):647–671.  https://doi.org/10.4155/fmc.15.7 PubMedCrossRefGoogle Scholar
  122. Radic N, Strukelj B (2012) Endophytic fungi: the treasure chest of antibacterial substances. Phytomedicine 19(14):1270–1284.  https://doi.org/10.1016/j.phymed.2012.09.007 PubMedCrossRefGoogle Scholar
  123. Rangel-Vega A, Bernstein LR, Mandujano-Tinoco EA, Garcia-Contreras SJ, Garcia-Contreras R (2015) Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front Microbiol 6:282.  https://doi.org/10.3389/fmicb.2015.00282 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rateb ME, Houssen WE, Harrison WT, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R, Jaspars M (2011) Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 74(9):1965–1971.  https://doi.org/10.1021/np200470u PubMedCrossRefGoogle Scholar
  125. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(213902):2139021–2139023.  https://doi.org/10.1063/1.2742324 PubMedGoogle Scholar
  126. Rehberg N, Akone HS, Ioerger TR, Erlenkamp G, Daletos G, Gohlke H, Proksch P, Kalscheuer R (2018) Chlorflavonin targets acetohydroxyacid synthase catalytic subunit IlvB1 for synergistic killing of Mycobacterium tuberculosis. ACS Infect Dis 4:123–134.  https://doi.org/10.1021/acsinfecdis.7b00055 PubMedCrossRefGoogle Scholar
  127. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4):869–876.  https://doi.org/10.1093/jac/dkn034 PubMedCrossRefGoogle Scholar
  128. Romero M, Martin-Cuadrado AB, Otero A (2012) Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 78(17):6345–6348.  https://doi.org/10.1128/AEM.01266-12 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25(1):39–67PubMedCrossRefGoogle Scholar
  130. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648.  https://doi.org/10.1016/j.mib.2007.09.010 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sato H, Frank DW (2011) Multi-functional characteristics of the Pseudomonas aeruginosa type III needle-tip protein, PcrV; comparison to orthologs in other Gram-negative bacteria. Front Microbiol 2:142.  https://doi.org/10.3389/fmicb.2011.00142
  132. Sawyer AJ, Wesolowski D, Gandotra N, Stojadinovic A, Izadjoo M, Altman S, Kyriakides TR (2013) A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model. Int J Pharm 453(2):651–655.  https://doi.org/10.1016/j.ijpharm.2013.05.041 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schaberle TF, Lohr F, Schmitz A, Konig GM (2014) Antibiotics from myxobacteria. Nat Prod Rep 31(7):953–972.  https://doi.org/10.1039/c4np00011k PubMedCrossRefGoogle Scholar
  134. Schiewe HJ, Zeeck A (1999) Cineromycins, gamma-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Streptomyces. J Antibiot (Tokyo) 52(7):635–642CrossRefGoogle Scholar
  135. Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53.  https://doi.org/10.1186/1471-2180-6-53 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2016) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22:314–326.  https://doi.org/10.1016/j.drudis.2016.09.013 PubMedCrossRefGoogle Scholar
  137. Shi NQ, Qi XR, Xiang B, Zhang Y (2014) A survey on “Trojan Horse” peptides: opportunities, issues and controlled entry to “Troy”. J Control Release 194:53–70.  https://doi.org/10.1016/j.jconrel.2014.08.014 PubMedCrossRefGoogle Scholar
  138. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol (NY) 10(1):56–63.  https://doi.org/10.1007/s10126-007-9036-y CrossRefGoogle Scholar
  139. Skwarecki AS, Milewski S, Schielmann M, Milewska MJ (2016) Antimicrobial molecular nanocarrier-drug conjugates. Nanomedicine 12(8):2215–2240.  https://doi.org/10.1016/j.nano.2016.06.002 PubMedCrossRefGoogle Scholar
  140. Smith RS, Zhang Z, Bouchard M, Li J, Lapp HS, Brotske GR, Lucchino DL, Weaver D, Roth LA, Coury A, Biggerstaff J, Sukavaneshvar S, Langer R, Loose C (2012) Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci Transl Med 4(153):153ra132.  https://doi.org/10.1126/scitranslmed.3004120 PubMedCrossRefGoogle Scholar
  141. Sobue T, Diaz P, Xu H, Bertolini M, Dongari-Bagtzoglou A (2016) Experimental models of C. albicans-streptococcal co-infection. Methods Mol Biol 1356:137–152.  https://doi.org/10.1007/978-1-4939-3052-4_10 PubMedCrossRefGoogle Scholar
  142. Stewart B, Rozen DE (2012) Genetic variation for antibiotic persistence in Escherichia coli. Evolution 66(3):933–939.  https://doi.org/10.1111/j.1558-5646.2011.01467.x PubMedCrossRefGoogle Scholar
  143. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459PubMedCrossRefGoogle Scholar
  144. Tan JM, Karthivashan G, Abd Gani S, Fakurazi S, Hussein MZ (2016) Biocompatible polymers coated on carboxylated nanotubes functionalized with betulinic acid for effective drug delivery. J Mater Sci Mater Med 27(2):26.  https://doi.org/10.1007/s10856-015-5635-8 PubMedCrossRefGoogle Scholar
  145. Tsou LK, Dossa PD, Hang HC (2013) Small molecules aimed at type III secretion systems to inhibit bacterial virulence. Medchemcomm 4(1):68–79.  https://doi.org/10.1039/C2MD20213A PubMedCrossRefGoogle Scholar
  146. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10(2):205–216.  https://doi.org/10.1002/cbic.200800521 PubMedCrossRefGoogle Scholar
  147. Vashist S, Zheng D, Pastorin G, Al-Rubeaan K, Luong J, Sheu F (2011) Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49(13):4077–4097.  https://doi.org/10.1016/j.carbon.2011.05.049 CrossRefGoogle Scholar
  148. Venkateswaran S, Henrique Dos Santos OD, Scholefield E, Lilienkampf A, Gwynne PJ, Swann DG, Dhaliwal K, Gallagher MP, Bradley M (2016) Fortified interpenetrating polymers—bacteria resistant coatings for medical devices. J Mater Chem B Mater Biol Med 4(32):5405–5411.  https://doi.org/10.1039/c6tb01110a PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283PubMedPubMedCentralGoogle Scholar
  150. Viegelmann C, Parker J, Ooi T, Clements C, Abbott G, Young L, Kennedy J, Dobson AD, Edrada-Ebel R (2014) Isolation and identification of antitrypanosomal and antimycobacterial active steroids from the sponge Haliclona simulans. Mar Drugs 12(5):2937–2952.  https://doi.org/10.3390/md12052937 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wang WX, Kusari S, Laatsch H, Golz C, Kusari P, Strohmann C, Kayser O, Spiteller M (2016) Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod 79(4):704–710.  https://doi.org/10.1021/acs.jnatprod.5b00436 PubMedCrossRefGoogle Scholar
  152. Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gokcen A, Vilcinskas A, Wiesner J, Mukkur T (2016) In vitro antimicrobial efficacy of Tobramycin against Staphylococcus aureus biofilms in combination with or without DNase I and/or Dispersin B: a preliminary investigation. Microb Drug Resist 23:384–390.  https://doi.org/10.1089/mdr.2016.0100 PubMedCrossRefGoogle Scholar
  153. Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH (2002) Dissection of the mechanism for the stringent factor RelA. Mol Cell 10(4):779–788PubMedCrossRefGoogle Scholar
  154. Wesolowski D, Alonso D, Altman S (2013) Combined effect of a peptide-morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic. Proc Natl Acad Sci U S A 110(21):8686–8689.  https://doi.org/10.1073/pnas.1306911110 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, Ben-Yehuda S (2012) Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog 8(9):e1002925.  https://doi.org/10.1371/journal.ppat.1002925 PubMedPubMedCentralCrossRefGoogle Scholar
  156. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333.  https://doi.org/10.1039/c1np00003a PubMedCrossRefGoogle Scholar
  157. Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109(Pt 5):610–618PubMedCrossRefGoogle Scholar
  158. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, Cornely OA, Rahav G, Bouza E, Lee C, Jenkin G, Jensen W, Kim YS, Yoshida J, Gabryelski L, Pedley A, Eves K, Tipping R, Guris D, Kartsonis N, Dorr MB (2017) Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med 376(4):305–317.  https://doi.org/10.1056/NEJMoa1602615 PubMedCrossRefGoogle Scholar
  159. Wittmann S, Schnabelrauch M, Scherlitz-Hofmann I, Mollmann U, Ankel-Fuchs D, Heinisch L (2002) New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides. Bioorg Med Chem 10(6):1659–1670PubMedCrossRefGoogle Scholar
  160. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015.  https://doi.org/10.1016/j.addr.2013.08.005 PubMedCrossRefGoogle Scholar
  161. Wonganuchitmeta SN, Yuenyongsawad S, Keawpradub N, Plubrukarn A (2004) Antitubercular sesterterpenes from the Thai sponge Brachiaster sp. J Nat Prod 67(10):1767–1770.  https://doi.org/10.1021/np0498354 PubMedCrossRefGoogle Scholar
  162. World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Online available at http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHOpdf?ua=1
  163. Wright GD (2015) Solving the antibiotic crisis. ACS Infect Dis 1(2):80–84.  https://doi.org/10.1021/id500052s PubMedCrossRefGoogle Scholar
  164. Wu H, Moser C, Wang H-Z, Hoiby N, Song Z-J (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1–7.  https://doi.org/10.1038/ijos.2014.65 PubMedCrossRefGoogle Scholar
  165. Xiao X, Zhu WW, Liu QY, Yuan H, Li WW, Wu LJ, Li Q, Yu HQ (2016) Impairment of biofilm formation by TiO2 photocatalysis through quorum quenching. Environ Sci Technol 50:11895–11902.  https://doi.org/10.1021/acs.est.6b03134 PubMedCrossRefGoogle Scholar
  166. Xu D, Su Y, Zhao L, Meng F, Liu C, Guan Y, Zhang J, Luo J (2016) Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. J Biomed Mater Res A 105:531–538.  https://doi.org/10.1002/jbm.a.35929 PubMedCrossRefGoogle Scholar
  167. Yang H, Lopina ST (2003) Penicillin V-conjugated PEG-PAMAM star polymers. J Biomater Sci Polym Ed 14(10):1043–1056PubMedCrossRefGoogle Scholar
  168. Zane HK, Butler A (2013) Fe acquisition. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry (2nd edition). Vol. 3: bioinorganic fundamentals and applications: metals in natural living systems and metals in toxicology and medicine. Elsevier, Amsterdam, pp 1–20.  https://doi.org/10.1016/B978-0-08-097774-4.00301-6 Google Scholar
  169. Zhou F, Wu S, Yuan Y, Chen WR, Xing D (2012) Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small 8(10):1543–1550.  https://doi.org/10.1002/smll.201101892 PubMedCrossRefGoogle Scholar
  170. Zhou JW, Luo HZ, Jiang H, Jian TK, Chen ZQ, Jia AQ (2018) Hordenine, a novel quorum sensing inhibitor and anti-biofilm agent against Pseudomonas aeruginosa. J Agric Food Chem.  https://doi.org/10.1021/acs.jafc.7b05035

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Biology and BiotechnologyHeinrich Heine University DüsseldorfDusseldorfGermany

Personalised recommendations