Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3071–3080 | Cite as

Biological conversion of methane to chemicals and fuels: technical challenges and issues

  • In Yeub Hwang
  • Anh Duc Nguyen
  • Thu Thi Nguyen
  • Linh Thanh Nguyen
  • Ok Kyung Lee
  • Eun Yeol Lee


Methane is a promising next-generation carbon feedstock for industrial biotechnology due to its low price and huge availability. Biological conversion of methane to valuable products can mitigate methane-induced global warming as greenhouse gas. There have been challenges for the conversion of methane into various chemicals and fuels using engineered non-native hosts with synthetic methanotrophy or methanotrophs with the reconstruction of synthetic pathways for target products. Herein, we analyze the technical challenges and issues of potent methane bioconversion technology. Pros and cons of metabolic engineering of methanotrophs for methane bioconversion, and perspectives on the bioconversion of methane to chemicals and liquid fuels are discussed.


Metabolic engineering Methane bioconversion Methanotrophs Synthetic methanotrophy 


Funding information

This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2015M3D3A1A01064882).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21CrossRefPubMedGoogle Scholar
  2. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A 105:10203–10208CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper center. Nature 465:115–119CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennett RK, Gonzalez JE, Whitaker WB, Antoniewicz MR, Papoutsakis ET (2018) Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metab Eng 45:75–78CrossRefPubMedGoogle Scholar
  5. Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiol-Sgm 149:1785–1795CrossRefGoogle Scholar
  6. Coleman WJ, Vidanes GM, Cottarel G, Muley S, Kamimura R, Javan AF, Sun J, Groban ES (2014) Biological conversion of multi-carbon compounds from methane. U.S. Patent Application No. 14/206,835Google Scholar
  7. Comer AD, Long MR, Reed JL, Pfleger BF (2017) Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories. Metab Eng Commun 5:26–33CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623CrossRefPubMedGoogle Scholar
  9. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151CrossRefPubMedGoogle Scholar
  10. Crombie A, Murrell JC (2011) 8 development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Meth Enzymol 495:119CrossRefPubMedGoogle Scholar
  11. Culpepper MA, Rosenzweig AC (2014) Structure and protein–protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry (N Y) 53:6211–6219CrossRefGoogle Scholar
  12. Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Anonymous history of modern biotechnology I. Springer, pp 1–39Google Scholar
  13. Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG (2017) Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G (B1). Front Microbiol 7:2167CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dong T, Fei Q, Genelot M, Smith H, Laurens LM, Watson MJ, Pienkos PT (2017) A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Convers Manag 140:62–70CrossRefGoogle Scholar
  15. DiCosimo DJ, Koffas M, Odom JM, Wang S (2004) Production of cyclic terpenoids. U.S. Patent No. 6,818,424Google Scholar
  16. Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614CrossRefPubMedGoogle Scholar
  17. Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339CrossRefPubMedGoogle Scholar
  18. Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hur DH, Na J, Lee EY (2017a) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J Chem Technol Biotechnol 92:311–318CrossRefGoogle Scholar
  20. Hur DH, Nguyen TT, Kim D, Lee EY (2017b) Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1. J Ind Microbiol Biotechnol:1–9Google Scholar
  21. Hwang IY, Hur DH, Lee JH, Park C, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380CrossRefPubMedGoogle Scholar
  22. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24:1597–1605CrossRefPubMedGoogle Scholar
  23. Ishikawa M, Tanaka Y, Suzuki R, Kimura K, Tanaka K, Kamiya K, Ito H, Kato S, Kamachi T, Hori K, Nakanishi S (2017) Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresour Technol 241:1157–1161CrossRefPubMedGoogle Scholar
  24. Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152CrossRefPubMedGoogle Scholar
  25. Kang TJ, Lee EY (2016) Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J Ind Eng Chem 35:8–13CrossRefGoogle Scholar
  26. Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192CrossRefPubMedGoogle Scholar
  27. Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893CrossRefPubMedGoogle Scholar
  28. Lamarche MG, Perreault J, Migues C (2016) Genetically engineered c1-utilizing microorganisms and processes for their production and use. WO/2016/165025Google Scholar
  29. Lee J, Yasin M, Park S, Chang IS, Ha K, Lee EY, Lee J, Kim C (2015) Gas-liquid mass transfer coefficient of methane in bubble column reactor. Korean J Chem Eng 32:1060–1063CrossRefGoogle Scholar
  30. Lee OK, Hur DH, Nguyen DTN, Lee EY (2016) Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuel Bioprod Bior 10:848–863CrossRefGoogle Scholar
  31. Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais J, Wendisch VF (2015) Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 99:10163–10176CrossRefPubMedGoogle Scholar
  32. Leonard E, Minshull J, Ness JE, Purcell TJ (2014) Compositions and methods for biological production of isoprene. U.S. Patent Application No. 14/773,118Google Scholar
  33. Lloyd JS, De Marco P, Dalton H, Murrell JC (1999a) Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch Microbiol 171:364–370CrossRefPubMedGoogle Scholar
  34. Lloyd JS, Finch R, Dalton H, Murrell JC (1999b) Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. Microbiology 145:461–470CrossRefPubMedGoogle Scholar
  35. Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. BioTechniques 33:1062–1067PubMedGoogle Scholar
  36. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740CrossRefPubMedGoogle Scholar
  37. Meinhold P, Peters MW, Chen MM, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chembiochem 6:1765–1768CrossRefPubMedGoogle Scholar
  38. Muller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais J (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201CrossRefPubMedGoogle Scholar
  39. Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN, Trotsenko YA (2016) Homo and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z. Appl Biochem Microbiol 52:263–268Google Scholar
  40. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174CrossRefPubMedGoogle Scholar
  41. Ng C, Jung M, Lee J, Oh M (2012) Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Factories 11:68CrossRefGoogle Scholar
  42. Nguyen HH, Chan S (2003) Protein and nucleic acid expression systems. US20030032141 A1Google Scholar
  43. Nguyen AD, Hwang IY, Chan JY, Lee EY (2016) Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels. Biotechnol Bioprocess Eng 21:477–482CrossRefGoogle Scholar
  44. Ojala DS, Beck DA, Kalyuzhnaya MG (2011) 7 genetic systems for moderately halo (alkali) philic bacteria of the genus Methylomicrobium. Meth Enzymol 495:99CrossRefPubMedGoogle Scholar
  45. Petersen LAH, Villadsen J, Jørgensen SB, Gernaey KV (2017) Mixing and mass transfer in pilot scale U-loop bioreactor. Biotechnol Bioeng 114:344–354CrossRefPubMedGoogle Scholar
  46. Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:8CrossRefPubMedPubMedCentralGoogle Scholar
  47. Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781CrossRefPubMedPubMedCentralGoogle Scholar
  48. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608CrossRefPubMedGoogle Scholar
  49. Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728CrossRefPubMedPubMedCentralGoogle Scholar
  50. Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709PubMedPubMedCentralGoogle Scholar
  51. Soo VW, McAnulty MJ, Tripathi A, Zhu F, Zhang L, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S (2016) Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Factories 15:11CrossRefGoogle Scholar
  52. Stephens GM, Dalton H (1986) The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria. Microbiology 132:2453–2462CrossRefGoogle Scholar
  53. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018CrossRefPubMedGoogle Scholar
  54. Subbian E (2015a) Production of lactic acid from organic waste or biogas or methane using recombinant methanotrophic bacteria. U.S. Patent Application No. 15/303,188Google Scholar
  55. Subbian E (2015b) Production of succinic acid from organic waste or biogas or methane using recombinant methanotrophic bacterium. U.S. Patent Application No. 15/303,184Google Scholar
  56. Tao L, Sedkova N, Yao H, Ye RW, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625–633CrossRefPubMedGoogle Scholar
  57. Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299CrossRefPubMedGoogle Scholar
  58. Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692CrossRefPubMedGoogle Scholar
  59. Van Ophem PW, Van Beeumen J, Duine JA (1993) Nicotinoprotein [NAD (P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur J Biochem 212:819–826CrossRefPubMedGoogle Scholar
  60. Vanderberg LA, Perry JJ (1994) Dehalogenation by Mycobacterium vaccae JOB-5: role of the propane monooxygenase. Can J Microbiol 40:169–172CrossRefPubMedGoogle Scholar
  61. Wang X, Wang Y, Liu J, Li Q, Zhang Z, Zheng P, Lu F, Sun J (2017) Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour Bioprocess 4:41CrossRefGoogle Scholar
  62. Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci U S A 109:12905–12910CrossRefPubMedPubMedCentralGoogle Scholar
  63. Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49–59CrossRefPubMedGoogle Scholar
  64. Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET (2015) Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33:165–175CrossRefPubMedGoogle Scholar
  65. Witthoff S, Schmitz K, Niedenfhr S, Nh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81:2215–2225CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol. Metab Eng 23:22–33CrossRefPubMedGoogle Scholar
  67. Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME (2016) Electroporation-based genetic manipulation in type I methanotrophs. Appl Environ Microbiol 82:2062–2069CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yang X, Zhong G, Lin J, Mao D, Wei D (2010) Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 37:575–580CrossRefPubMedGoogle Scholar
  69. Ye RW, Kelly K (2012) Construction of carotenoid biosynthetic pathways through chromosomal integration in methane-utilizing bacterium Methylomonas sp. strain 16a. Microbial Carotenoids from Bacteria and Microalgae: Methods and Protocols:185–195Google Scholar
  70. Ye RW, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 34:289–299Google Scholar
  71. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452CrossRefPubMedGoogle Scholar
  72. Yu Y, Ramsay JA, Ramsay BA (2006) On-line estimation of dissolved methane concentration during methanotrophic fermentations. Biotechnol Bioeng 95:788–793CrossRefPubMedGoogle Scholar
  73. Zilly FE, Acevedo JP, Augustyniak W, Deege A, Husig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem 123:2772–2776CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • In Yeub Hwang
    • 1
  • Anh Duc Nguyen
    • 1
  • Thu Thi Nguyen
    • 1
  • Linh Thanh Nguyen
    • 1
  • Ok Kyung Lee
    • 1
  • Eun Yeol Lee
    • 1
  1. 1.Department of Chemical EngineeringKyung Hee UniversityYongin-siRepublic of Korea

Personalised recommendations