Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3017–3026 | Cite as

Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update

  • Rachel Chen


Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature’s catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2′ fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.


Oligosaccharide synthesis Glycosyltransferase Sugar nucleotides Whole-cell biocatalysis Enzymatic synthesis Galactosidase 


Funding information

Research on complex carbohydrate synthesis in Chen Laboratory at Georgia Institute of Technology is supported by grants from US National Science Foundation, BES-0455193 and CBET-1509202.

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.


  1. Adlercreutz D, Weadge JT, Petersen BO, Duus JO, Dovichi NJ, Palcic (2010) Enzymatic synthesis of Gb3 and iGb3 ceramides. Carbhydr Res 345:1384–1388CrossRefGoogle Scholar
  2. Antoine T, Prieme B, Heyraud A, Greffe L, Gilbert M, Wakarchuk WW, Lam JS, Samain E (2003) Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. ChemBioChem 4:406–412CrossRefPubMedGoogle Scholar
  3. Baumgartner F, Jurzitza L, Conrad J, Beifuss U, Sprenger GA, Abermann C (2015) Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorg Med Chem 23(21):L 6799–L 6806CrossRefPubMedGoogle Scholar
  4. Benini S, Toccafondi M, Reijzek M, Musiani F, Wagstaff BA, Wuerges J, Cianci M, Field RA (2017) Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: activity, structure, and substrate specificity. Biochim Biophys Acta 1365(11A):1348–1357CrossRefGoogle Scholar
  5. Bernatchez S, Golbert M, Blanchard MC, Karwaski MF, Li J, Defrees S, Wakarchuk WW (2007) Variants of the β1,3 galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17(12):1333–1343CrossRefPubMedGoogle Scholar
  6. Bettler E, Samain E, Chazalet V, Bosso C, Heyraud A, Joziasse DH, Wakarchuk WW, Imberty A, Geremia AR (1999) The living factory in vivo production of N-acetylglucosamine containing carbohydrates in E. coli. Glycoconj J 16(3):205–212CrossRefPubMedGoogle Scholar
  7. Bidart GN, Rodrigue-Diaz J, Palomino-Schatzlein M, Monedero V, Yebra MJ (2017) Human milk and mucosal lacto-and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species. Appl Microbiol Biotechnol 101(1):205–215CrossRefPubMedGoogle Scholar
  8. Blixt O, Brown J, Schur MJ, Wakarchuk W, Paulson JC (2001) Efficient preparation of natural and synthetic galactosides with a recombinant beta 1,4 galatosyltransferase/UDP-4’-Gal epimerase fusion protein. J Org Chem 66(7):2442–2448CrossRefPubMedGoogle Scholar
  9. Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W (2005) Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res 340(12):1963–1972CrossRefPubMedGoogle Scholar
  10. Brockhausen I, Riley JG, Joynt M, Yang X, Szarek WA (2008) Acceptor substrate specificity of UDP-GalL GlcNAc-R β1,3 galactosyltransferase (WbbD) from Escherichia coli O7:K1. Glycocong J 25(7):663–673CrossRefGoogle Scholar
  11. Chen R (2012) Bacterial expression systems for recombinant proteins: E. coli and beyond. Biotechnol Adv 30(5):1102–1107CrossRefPubMedGoogle Scholar
  12. Chen R (2015) The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Factories 14:197CrossRefGoogle Scholar
  13. Chen C, Liu B, Xu Y, Utikina N, Zhou D, Danrilov L, Torgov V, Veselovsky V, Feng L (2016) Biochemical characterization of the novel a-1,3-galactosyltransferase WcIR from Escherichia coli O3. Carbohydr Res 430:36–43CrossRefPubMedGoogle Scholar
  14. Dagher SF, Azcarate-peril MA, Bruno-Barcena JM (2013) Heterologous expression of a bioactive β-heoxysyltransferase, an enzyme producer of prebiotics from Sporobolomyces singularis. Appl Environ Microbiol 79(4):1241–1249CrossRefPubMedPubMedCentralGoogle Scholar
  15. Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner FF, Ferguson MA, Routier FH (2015) Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis. Int J Parasitol 45(12):783–790CrossRefPubMedPubMedCentralGoogle Scholar
  16. Decker D, Kleckowski LA (2017) Substrate specificity and inhibitor sensitivity of plant UDP-sugar producing pyrophosphorylases. Front Plant Sci 8:1610CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gong W, Xu L, Gu G, Lu L, xiao M (2016) Efficient and regioselective synthesis of globotriose by a novel a-galactosidase from Bacteroides fragilis. Appl Microbiol Biotechnol 100(15):6693–6702CrossRefPubMedGoogle Scholar
  18. Guo Y, Fang J, Li T, Li X, Ma C, Wang Z, Wang PG, Li L (2015) Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlaC and UP-GalA. Carbohydr Res 411:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hart GW (2013) Thematic minireview series on glycobiology and extracellular matrices glycan functions pervade biology at all levels. JBC 288:6903–6904CrossRefGoogle Scholar
  20. Kataoka Y, Ozeki S, Miyake K, Lijima S (2006) Functional expression of Streptococcal galactosyltransferase in baculovirus/insect cell expression system. J Biosci Bioeng 101(4):372–375CrossRefPubMedGoogle Scholar
  21. Kato T, Oizumi T, ogata M, Murakawa A, Usui T, Park EY (2015) Novel enzymatic synthesis of spacer-linked p(k) trisaccharide targeting for neutralization of Shiga toxin. J Biotechnol 209:50–57CrossRefPubMedGoogle Scholar
  22. Koizumi S, Endo T, Tabata K and Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nature Biotechnol 16:847–850Google Scholar
  23. Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177(3):491–496CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kotake T, Yamaguchi D, Ohzono H, Hojot S, Kaneko S, Ishida H, Tsumuraya Y (2004) UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. JBC 279(44):45728–45736CrossRefGoogle Scholar
  25. Lau K, Thon V, Yu H, Ding L, Chen Y, Muthana MM, Wong D, Huang R, Chen X (2010) Highly efficient chemoenzymatic synthesis of beta 1,4-linked galactosides with promiscuous bacterial beta 1,4 galactosyltransferases. Chem Commun (Camb) 46(33):6066–6068CrossRefGoogle Scholar
  26. Lee WH, Pathanibul P, Quarterman J, Jo JH, Han NS, Miller MJ, Jin YS, Seo JH (2012) Whole cell biosynthesis of a functional oligosaccharide, 2’-fucosyllactose, using engineered Escherichia coli. Microb Cell Factories 11:48CrossRefGoogle Scholar
  27. Litterer LA, Schnurr JA, Alaisance KL, Storery KK, Gronwald JW, Somers DA (2006) Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem 44(4):171–180CrossRefPubMedGoogle Scholar
  28. Liu Z, Lu Y, zhang J, Pardee K, Wang PG (2003) P1 trisaccharide (Gala1,4Galb1,4GlcNac) synthesis by enzyme glycosylation reactions using recombinant Escherichia coli. Appl Environ Microbiol 69(4):2110–2115CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu XW, Xia C, Li L, Guan WY, Pettot N, Zhang HC, Chen M, Wang PG (2009) Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorg Med Chem 17(14):4910–4915CrossRefPubMedGoogle Scholar
  30. Mackenzie LF, Wang Q, Warren RAJ, Withers SG (1998) Glycosynthase: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc 120:5583–5584CrossRefGoogle Scholar
  31. Malissard M, Berger EG (2001) Improving solubility of catalytic domain of human beta 1,4 galactosyltransferase 1 through rationally designed amino acid replacement. Eur J Biochem 268(15):4352–4358CrossRefPubMedGoogle Scholar
  32. Mao Z, Shin HD, Chen RR (2006) Engineering the E coli UDP-glucose synthesis pathway for oligosaccharide synthesis. Biotechnol Prog 22(2):369–374CrossRefPubMedGoogle Scholar
  33. Muthana MM, Qu J, Xue M, Klyuchnik T, Siu A, Li Y, Zhang L, Yu H, Li L, Wang PG, Chen X (2015) Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides. Chem Commun (Camb) 51(22):4595–4598CrossRefGoogle Scholar
  34. Nahalka J, Patoprsty V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7(9):1778–1780CrossRefPubMedGoogle Scholar
  35. Nakajima M, Kitaoka M (2008) Identification of Lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6. Appl Environ Microbiol 74(20):6333–6337CrossRefPubMedPubMedCentralGoogle Scholar
  36. Namdjou DJ, Chem HM, Vinogradov E, Brochu D, Withers SG, Wakarchuk WW (2008) A b1,4 galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Chembiochem 9(10):1632–1640CrossRefPubMedGoogle Scholar
  37. Noguchi T, Shiba T (1998) Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci Biotechnol Biochem 62(8):1594–1596CrossRefPubMedGoogle Scholar
  38. Ohashi T, Cramer N, Ishimizu T, Hase S (2006) Preparation of UDP-galacturonic acid using UDP-sugar pyrophosphorylase. Anal Biochem 352(2):182–187CrossRefPubMedGoogle Scholar
  39. OKuyama M, Matsunaga K, Watanabe K, Yamahita K, Tagami T, Kikuchi A, Ma M, Klahan P, Mori H, Yao M, Kimura A (2017) Efficient synthesis of a-galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining a-galactosidase (BtGH97b). FEBS J 284:766–783CrossRefPubMedGoogle Scholar
  40. Park JE, Lee KY, Do SI, Lee SS (2002) Expression and characterization of beta 1,4 galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae. J Biochem Mol Biol 35(3):330–336PubMedGoogle Scholar
  41. Pasek M, Boeggeman E, Ramakrishnan B, Qasba PK (2010) Galactin-1 as a fusion partner for the production of soluble and folded human beta 1,4 galacosyltransferase-T7 in E. coli. Biochem Biophys Res Commun 394(3):679–684CrossRefPubMedPubMedCentralGoogle Scholar
  42. Prudden AR, Liu L, Capicciotti CJ, Wolfert MA, Wang S, Gao Z, Meng L, Moremen KW, Boons GJ (2017) Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc Natl Acad Sci U S A 114(27):6954–6959CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rexer TFT, Schildbach A, Klapproth J, Schierhorn A, Mahour R, Pietzsch M, Rapp E, Reichl U (2018) One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnol Bioeng 115:192–205CrossRefPubMedGoogle Scholar
  44. Ruffing A, Chen R (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Factories 5:25CrossRefGoogle Scholar
  45. Ruffing AM, Mao Z, Chen RR (2006) Metabolic engineering of Agrobacterium sp for UDP-galactose regeneration and oligosaccharide synthesis. Metab Eng 8:465–473CrossRefPubMedGoogle Scholar
  46. Saksouk N, Pelosi L, colin-Morel P, Boumedienne M, abdian PL, Geremia RA (2005) The capsular polysaccharide biosynthesis of Streptococcus pneumonia serotype 8: functional identification of the glycosyltransferase WciS (Cap8H). Biochem J 389(1):63–72CrossRefPubMedPubMedCentralGoogle Scholar
  47. Seto NO, Palcic MM, Hindsgaul O, Bundle DR, Narang SA (1995) Expression of a recombinant human glycosyltransferase from a synthetic gene and its utilization for synthesis of the human group B trisaccharide. Eur J Biochem 234(1):322–328CrossRefGoogle Scholar
  48. Shao J, Hayashi T, wang PG (2003) Enhanced production of alpha-galactosyl epitopes by metabolically engineered Pichia pastoris. Appl Environ Microbiol 69(9):5238–5242Google Scholar
  49. Sprenger GA, Baumgautner F, Alvermann C (2017) Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 258:79–91CrossRefPubMedGoogle Scholar
  50. Stenutz R, Weintraub A, Goran W (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30:382–403CrossRefPubMedGoogle Scholar
  51. Strazzulli A, Cobucci-Ponzano B, Carillo S, Bedini E, Corsaro MM, Pocsfalvi G, Withers SG, Rossi M, Moracci M (2017) Introducing transgalactosylation activity into a family 42 β-galactosidase. Glycobiology 27(5):425–437CrossRefPubMedGoogle Scholar
  52. Teze D, Daligault F, Ferrieres V, sanejouand YH, Tellier C (2015) Semi-rational approach for converting a GH36 α-glycosidase into an α-transglucosidase. Glycobiology 25(4):420–427CrossRefPubMedGoogle Scholar
  53. Tsai T, Lee H, Chang S, Wang C, Tu Y, Lin Y, Hwang D, Wong C (2013) Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 135:14831–14839CrossRefPubMedGoogle Scholar
  54. Usvalampi A, Maaheimo H, Tossavainen O, Frey AD (2017) Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures. Glycoconj J.
  55. Vasta GR (2009) Roles of glactins in infection. Nat Rev Microbiol 7:424–38Google Scholar
  56. Vera C, Cordova A, Aburto C, Guerrero C, Suarez S, Illanes A (2016) Synthesis and purification of galacto-oligosaccharides: state of the art. World J Microbiol Biotechnol 32(12):197CrossRefPubMedGoogle Scholar
  57. Wahl C, Spiertz M, Elling L (2017) Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley). J Biotechnol 258:51–55CrossRefPubMedGoogle Scholar
  58. Wakarchuk WW, Cunningham A, Watson DC, Young NM (1998) Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng 11(4):295–302CrossRefPubMedGoogle Scholar
  59. Wang S, Czuchry D, Liu B, Vinnikova AN, Gao Y, Vlahakis JZ, Szarek WA, Wang L, Feng L, Brockhausen I (2014) Characterization of two UDP-Gal: GalNAc-diphosphate-lipid b1,3-galacosyltransferases WbwcC from Escherichia coli serotypes O104 and O5. J Bacteriol 196(17):3122–3133CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang WL, Wang W, Du YM, Wu H, Yu XB, Ye CB, Jung YS, Qian YS, Voglmeir J, Lie L (2017a) Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: fucosylation is a key factor. Food Chem 235:167–174CrossRefPubMedGoogle Scholar
  61. Wang J, Zheng C, Zhang T, Liu Y, Cheng Z, Liu D, Ying H, Niu H (2017b) Novel one-pot ATP regeneration system based on three-enzyme cascade for industrial CTP production. Biotechnol Lett 39(12):1875–1881CrossRefPubMedGoogle Scholar
  62. Xiao Z, Guo Y, Liu Y, Li L, Zhang Q, Wen L, Wang X, Knodengaden SM, Wu Z, Zhou J, Cao X, Li X, Ma C, Wang PG (2016) Chemoenzymatic synthesis of a library of human milk oligosaccharides. J Org Chem 81(14):5851–5865CrossRefPubMedGoogle Scholar
  63. Xu C, Liu B, Hu B, Han Y, Feng L, Allingham JS, Szarek WA, Wang L, Brockhausen I (2011) Biochemical characterization of UDP-Gal: GlcNAc-pyrophosphate-lipid b1,4 galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating-unit synthesis. J Bacteriol 193(2):449–459CrossRefPubMedGoogle Scholar
  64. Yan YL, Hu Y, Simpson DJ, Ganzle MG (2017) Enzymatic synthesis and purification of galactosylated chitosan oligosaccharides reducing adhesion of enterotoxigenic Escherichia coli K88. J Agric Food Chem 65(25):5142–5150CrossRefPubMedGoogle Scholar
  65. Yang T, Bar-Peled M (2010) Identification of a novel UDP-sugar pyrophosphorylase with a broad substrate specificity in Trypanosoma cruzi. Biochem J 429(3):533–543CrossRefPubMedGoogle Scholar
  66. Yi W, Peroli RS, Eguchi H, Motari E, Woodward R, Wang PG (2008) Characterization of a bacterial β1.3 galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 47(5):1241–1248CrossRefPubMedGoogle Scholar
  67. Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS (2017) Engineering of the Bacillus circulans β-galactosidase product specificity. Biochemistry 56(5):704–711CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yu H, Thon V, Lau K Cai L, Chen Y, Mu S, Li Y, Wang PG, Chen X (2010) Highly efficient chemoenzymatic synthesis of β1,3-linked galactosides. Chem Commun (Camb) 46(40):7507–7509CrossRefGoogle Scholar
  69. Zeuner B, Nyffenegger C, Mikkelsen JD, Meyer AS (2017) Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. N Biotechnol 33(3):355–360CrossRefGoogle Scholar
  70. Zhao X, Yang Z, Xue M, Ma Z, Wang S, Wang P, Chen M (2014) A one-pot approach to bio-synthesize globotriose and its derivatives from simpler substrates. European J of Med Chem 80:423–427CrossRefGoogle Scholar
  71. Zhou D, Utikina N, Li D, Dong C, Druzhinina T, Veselovsky V, Liu B (2013) Biochemical characterization of a new b1,3-galactosyltransferase WbuP from Escherichia coli O114 that catalyzed the second step in O-antigen repeating-unit. Carbohydr Res 381:43–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations