Skip to main content

Transcriptome analysis of wild-type and afsS deletion mutant strains identifies synergistic transcriptional regulator of afsS for a high antibiotic-producing strain of Streptomyces coelicolor A3(2)

Abstract

Most secondary metabolism in Actinobacteria is controlled by multi-layered, gene-regulatory networks. These regulatory mechanisms are not easily identified due to their complexity. As a result, when a strong transcriptional regulator (TR) governs activation of biosynthetic pathways of target antibiotics such as actinorhodin (ACT), additional enhancement of the biosynthesis is difficult in combination with other TRs. To find out any “synergistic transcriptional regulators (sTRs)” that show an additive effect on the major, often strong, transcriptional regulator (mTR), here, we performed a clustering analysis using the transcriptome datasets of an mTR deletion mutant and wild-type strain. In the case of ACT biosynthesis in Streptomyces coelicolor, PhoU (SCO4228) and RsfA (SCO4677) were selected through the clustering analysis, using AfsS (SCO4425) as a model mTR, and experimentally validated their roles as sTRs. Furthermore, through analysis of synergistic effects, we were able to suggest a novel regulation mechanism and formulate a strategy to maximize the synergistic effect. In the case of the double TR mutant strain (ΔrsfA pIBR25::afsS), it was confirmed that the increase of cell mass was the major cause of the synergistic effect. Therefore, the strategy to increase the cell mass of double mutant was further attempted by optimizing the expression of efflux pump, which resulted in 2-fold increase in the cell mass and 24-fold increase in the production of ACT. This result is the highest ACT yield from S. coelicolor ever reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8(5):557–563. https://doi.org/10.1016/j.coph.2008.04.008

    CAS  Article  PubMed  Google Scholar 

  2. Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 13(8):552–564. https://doi.org/10.1038/nrg3244

    CAS  Article  PubMed  Google Scholar 

  3. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35(Database issue):D760–D765. https://doi.org/10.1093/nar/gkl887

    CAS  Article  PubMed  Google Scholar 

  4. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    CAS  Article  PubMed  Google Scholar 

  5. D’Haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23(12):1499–1501. https://doi.org/10.1038/nbt1205-1499

    Article  PubMed  Google Scholar 

  6. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95(25):14863–14868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Gardner SG, Johns KD, Tanner R, McCleary WR (2014) The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J Bacteriol 196(9):1741–1752. https://doi.org/10.1128/jb.00029-14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–1546. https://doi.org/10.1073/pnas.0337542100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Hindra MMJ, Jones SE, Elliot MA (2014) Complex intra-operonic dynamics mediated by a small RNA in Streptomyces coelicolor. PLoS One 9(1):e85856. https://doi.org/10.1371/journal.pone.0085856

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, Weston AD, de Atauri P, Aitchison JD, Hood L, Siegel AF, Bolouri H (2005) A data integration methodology for systems biology. Proc Natl Acad Sci U S A 102(48):17296–17301. https://doi.org/10.1073/pnas.0508647102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Jeong Y, Kim JN, Kim MW, Bucca G (2016) The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 7:11605. https://doi.org/10.1038/ncomms11605

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  14. Kim ES, Song JY, Kim DW, Chater KF, Lee KJ (2008) A possible extended family of regulators of sigma factor activity in Streptomyces coelicolor. J Bacteriol 190(22):7559–7566. https://doi.org/10.1128/jb.00470-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Lee PC, Umeyama T, Horinouchi S (2002) afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 43(6):1413–1430

    CAS  Article  PubMed  Google Scholar 

  16. Lee HN, Kim JS, Kim P, Lee HS, Kim ES (2013) Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl Environ Microbiol 79(13):4159–4163. https://doi.org/10.1128/aem.00546-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Li S, Wang J, Li X, Yin S, Wang W, Yang K (2015) Genome-wide identification and evaluation of constitutive promoters in streptomycetes. Microb Cell Factories 14(1):172. https://doi.org/10.1186/s12934-015-0351-0

    Article  Google Scholar 

  18. Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F, Kyung YS, Sherman DH, Hu WS (2008) Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics 9:56. https://doi.org/10.1186/1471-2164-9-56

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lv Q, Cheng R, Shi T (2014) Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions. BMC Plant Biol 14:180. https://doi.org/10.1186/1471-2229-14-180

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen ØM, Sletta H, Alam MT, Merlo ME, Moore J, Omara WAM, Morrissey ER, Juarez-Hermosillo MA, Rodríguez-García A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze WH, Challis GL, Jansen RC, Dijkhuizen L, Rand DA, Wild DL, Bonin M, Reuther J, Wohlleben W, Smith MCM, Burroughs NJ, Martín JF, Hodgson DA, Takano E, Breitling R, Ellingsen TE, Wellington EMH (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10–10. https://doi.org/10.1186/1471-2164-11-10

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oganesyan V, Oganesyan N, Adams PD, Jancarik J, Yokota HA, Kim R, Kim S-H (2005) Crystal structure of the “PhoU-like” phosphate uptake regulator from Aquifex aeolicus. J Bacteriol 187(12):4238–4244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Ohnishi Y, Yamazaki H, Kato J-Y, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69(3):431–439. https://doi.org/10.1271/bbb.69.431

    CAS  Article  PubMed  Google Scholar 

  23. Okamoto S, Taguchi T, Ochi K, Ichinose K (2009) Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster. Chem Biol 16(2):226–236. https://doi.org/10.1016/j.chembiol.2009.01.015

    CAS  Article  PubMed  Google Scholar 

  24. Park SS, Yang YH, Song E, Kim EJ, Kim WS, Sohng JK, Lee HC, Liou KK, Kim BG (2009) Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 36(8):1073–1083. https://doi.org/10.1007/s10295-009-0591-2

    CAS  Article  PubMed  Google Scholar 

  25. Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta 1829(11):1236–1247. https://doi.org/10.1016/j.bbagrm.2013.09.006

    CAS  Article  PubMed  Google Scholar 

  26. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39(3):162–176. https://doi.org/10.1080/07853890701195262

    CAS  Article  PubMed  Google Scholar 

  27. Santos-Beneit F, Rodriguez-Garcia A, Sola-Landa A, Martin JF (2009) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72(1):53–68. https://doi.org/10.1111/j.1365-2958.2009.06624.x

    CAS  Article  PubMed  Google Scholar 

  28. Sola-Landa A, Moura RS, Martín JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100(10):6133–6138. https://doi.org/10.1073/pnas.0931429100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Thuy ML, Kharel MK, Lamichhane R, Lee HC, Suh JW, Liou K, Sohng JK (2005) Expression of 2-deoxy-scyllo-inosose synthase (kanA) from kanamycin gene cluster in Streptomyces lividans. Biotechnol Lett 27(7):465–470. https://doi.org/10.1007/s10529-005-2222-y

    CAS  Article  PubMed  Google Scholar 

  30. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5(9):829–834. https://doi.org/10.1038/nmeth.1246

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Willems A, Au-Yeung C, Tahlan K, Nodwell JR (2012) A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. MBio 3(5):e00191–e00112. https://doi.org/10.1128/mBio.00191-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Yang Y-H, Song E, Kim J-N, Lee B-R, Kim E-J, Park S-H, Kim W-S, Park H-Y, Jeon J-M, Rajesh T, Kim Y-G, Kim B-G (2012) Characterization of a new ScbR-like γ-butyrolactone binding regulator (SlbR) in Streptomyces coelicolor. Appl Microbiol Biotechnol 96(1):113–121. https://doi.org/10.1007/s00253-011-3803-4

    CAS  Article  PubMed  Google Scholar 

  33. Zhang L, Li WC, Zhao CH, Chater KF, Tao MF (2007) NsdB, a TPR-like-domain-containing protein negatively affecting production of antibiotics in Streptomyces coelicolor A3 (2). Wei Sheng Wu Xue Bao 47(5):849–854

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (2016953757), and by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(116139-03-1-SB010), and by the Institute for Basic Science (IBS-R13-G1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, M.W., Lee, BR., You, S. et al. Transcriptome analysis of wild-type and afsS deletion mutant strains identifies synergistic transcriptional regulator of afsS for a high antibiotic-producing strain of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 102, 3243–3253 (2018). https://doi.org/10.1007/s00253-018-8838-3

Download citation

Keywords

  • Combination of transcriptional regulators
  • Clustering analysis
  • Time-series transcriptome
  • Actinorhodin
  • Streptomyces coelicolor