A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity

  • Timo Stressler
  • Katrin Reichenberger
  • Claudia Glück
  • Sebastian Leptihn
  • Jens Pfannstiel
  • Paul Swietalski
  • Andreas Kuhn
  • Ines Seitl
  • Lutz Fischer
Biotechnologically relevant enzymes and proteins

Abstract

Kluyveromyces lactis is a common fungal microorganism used for the production of enzyme preparations such as β-galactosidases (native) or chymosin (recombinant). It is generally important that enzyme preparations have no unwanted side activities. In the case of β-galactosidase preparations produced from K. lactis, an unwanted side activity could be the presence of arylsulfatase (EC 3.1.6.1). Due to the action of arylsulfatase, an unpleasant “cowshed-like” off-flavor would occur in the final product. The best choice to avoid this is to use a yeast strain without this activity. Interestingly, we found that certain natural K. lactis strains express arylsulfatases, which only differ in one amino acid at position 139. The result of this difference is that K. lactis DSM 70799 (expressing R139 variant) shows no arylsulfatase activity, unlike K. lactis GG799 (expressing S139 variant). After recombinant production of both variants in Escherichia coli, the R139 variant remains inactive, whereas the S139 variant showed full activity. Mass spectrometric analyses showed that the important posttranslational modification of C56 to formylglycine was not found in the R139 variant. By contrast, the C56 residue of the S139 variant was modified. We further investigated the packing and secondary structure of the arylsulfatase variants using optical spectroscopy, including fluorescence and circular dichroism. We found out that the inactive R139 variant exhibits a different structure regarding folding and packing compared to the active S139 variant. The importance of the amino acid residue 139 was documented further by the construction of 18 more variants, whereof only ten showed activity but always reduced compared to the native S139 variant.

Keywords

Arylsulfatase Kluyveromyces lactis Amino acid exchange p-nitrophenyl sulfate p-cresol sulfate Formylglycine Secondary structure determination 

Notes

Acknowledgements

The authors would like to thank Wolfgang Claaßen (University of Hohenheim) for his support during the bioreactor cultivations. We also thank Susanne Herr and Sabine Lutz-Wahl (University of Hohenheim) for their support during the construction of the arylsulfatase variants. In addition, many thanks to Veronika Volk and Desirée Leisibach (University of Hohenheim) for performing preliminary experiments.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2018_8828_MOESM1_ESM.pdf (218 kb)
ESM 1 (PDF 217 kb)

References

  1. Almeida CM, Gomes D, Faro C, Simões I (2015) Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl Microbiol Biotechnol 99:269–281CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Barbeyron T, Potin P, Richard C, Collin O, Kloareg B (1995) Arylsulphatase from Alteromonas carrageenovora. Microbiology 141(Pt 1):2897–2904Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Cregut M, Piutti S, Slezack-Deschaumes S, Benizri E (2013) Compartmentalization and regulation of arylsulfatase activities in Streptomyces sp., Microbacterium sp. and Rhodococcus sp. soil isolates in response to inorganic sulfate limitation. Microbiol Res 168:12–21CrossRefPubMedGoogle Scholar
  6. Daniels DL, Plunkett G, Burland V, Blattner FR (1992) Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 257:771–778CrossRefPubMedGoogle Scholar
  7. de Hostos EL, Schilling J, Grossman AR (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet MGG 218:229–239CrossRefPubMedGoogle Scholar
  8. Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Von Figura K (1998) Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem 273:25560–25564CrossRefPubMedGoogle Scholar
  9. Edelheit O, Hanukoglu A, Hanukoglu I (2009) Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9:61Google Scholar
  10. Fairbanks G, Steck TL, Wallach DFH (1971) Coomassie blue R250 used in isopropanol-acetic acid. Biochemistry 10:2602–2618CrossRefGoogle Scholar
  11. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272CrossRefPubMedGoogle Scholar
  12. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730CrossRefPubMedPubMedCentralGoogle Scholar
  13. Harada T, Spencer B (1962) The effect of sulphate assimilation on the induction of arylsulphatase synthesis in fungi. Biochem J 82:148–156CrossRefPubMedPubMedCentralGoogle Scholar
  14. Inchaurrondo VA, Yantorno OM, Voget CE (1994) Yeast growth and β-galactosidase production during aerobic batch cultures in lactose-limited synthetic medium. Process Biochem 29:47–54Google Scholar
  15. Jo H-J, Noh J-S, Kong K-H (2013) Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein Expr Purif 90:84–89CrossRefPubMedGoogle Scholar
  16. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392CrossRefPubMedGoogle Scholar
  17. Kertesz MA (2000) Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24:135–175PubMedGoogle Scholar
  18. Kim J-H, Byun D-S, Godber JS, Choi J-S, Choi W-C, Kim H-R (2004) Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330. Appl Microbiol Biotechnol 63:553–559CrossRefPubMedGoogle Scholar
  19. Kim D-E, Kim K-H, Bae Y-J, Lee J-H, Jang Y-H, Nam S-W (2005) Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr Purif 39:107–115CrossRefPubMedGoogle Scholar
  20. Lachance M-A (2007) Current status of Kluyveromyces systematics. FEMS Yeast Res 7:642–645CrossRefPubMedGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  22. Lee D-G, Shin JG, Jeon MJ, Lee S-H (2013) Heterologous expression and characterization of a recombinant thermophilic arylsulfatase from Thermotoga maritima. Biotechnol Bioprocess Eng 18:897–902CrossRefGoogle Scholar
  23. Lim J-M, Jang Y-H, Kim H-R, Kim YT, Choi TJ, Kim JK, Nam S-W (2004) Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. J Microbiol Biotechnol 14:777–782Google Scholar
  24. Miech C, Dierks T, Selmer T, Von Figura K, Schmidt B (1998) Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J Biol Chem 273:4835–4837CrossRefPubMedGoogle Scholar
  25. Murooka Y, Yim MH, Harada T (1980) Formation and purification of Serratia marcescens arylsulfatase. Appl Environ Microbiol 39:812–817PubMedPubMedCentralGoogle Scholar
  26. Naumov GI, Naumova ES, Barrio E, Querol A (2006) Genetic and molecular study of inability of the yeast Kluyveromyces lactis var drosophilarum to ferment lactose. Mikrobiologiia 75:299–304PubMedGoogle Scholar
  27. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMedGoogle Scholar
  28. Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521CrossRefPubMedPubMedCentralGoogle Scholar
  29. Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021CrossRefPubMedGoogle Scholar
  30. Schestag F, Yaghootfam A, Habetha M, Poeppel P, Dietz F, Klein RA, Zlotogora J, Gieselmann V (2002) The functional consequences of mis-sense mutations affecting an intra-molecular salt bridge in arylsulphatase A. Biochem J 367:499–504CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefPubMedGoogle Scholar
  32. Smith PK, Krohn RI, Hermanson GT (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  33. Spohner SC, Schaum V, Quitmann H, Czermak P (2016) Kluyveromyces lactis: an emerging tool in biotechnology. J Biotechnol 222:104–116CrossRefPubMedGoogle Scholar
  34. Stressler T, Leisibach D, Lutz-Wahl S, Kuhn A, Fischer L (2016a) Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing. Appl Microbiol Biotechnol 100:5401–5414CrossRefPubMedGoogle Scholar
  35. Stressler T, Pfahler N, Merz M, Hubschneider L, Lutz-Wahl S, Claaßen W, Fischer L (2016b) A fusion protein consisting of the exopeptidases PepN and PepX—production, characterization, and application. Appl Microbiol Biotechnol 100:7499–7515CrossRefPubMedGoogle Scholar
  36. Stressler T, Seitl I, Kuhn A, Fischer L (2016c) Detection, production, and application of microbial arylsulfatases. Appl Microbiol Biotechnol 100:9053–9067CrossRefPubMedGoogle Scholar
  37. Stressler T, Tanzer C, Ewert J, Claaßen W, Fischer L (2017) Simple purification method for a recombinantly expressed native His-tag-free aminopeptidase A from Lactobacillus delbrueckii. Protein Expr Purif 131:7–15CrossRefPubMedGoogle Scholar
  38. Taylor WR (1986) The classification of amino acid conservation. J Theor Biol 119:205–218CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme ScienceUniversity of HohenheimStuttgartGermany
  2. 2.Institute of MicrobiologyUniversity of HohenheimStuttgartGermany
  3. 3.Core Facility Hohenheim, Mass Spectrometry UnitUniversity of HohenheimStuttgartGermany

Personalised recommendations