Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3105–3120 | Cite as

Xylo- and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes

  • Sindhu Mathew
  • Anna Aronsson
  • Eva Nordberg Karlsson
  • Patrick Adlercreutz
Biotechnological products and process engineering


Xylooligosaccharides (XOS) and arabinoxylooligosaccharides (AXOS) were produced from the insoluble arabinoxylan fraction of pretreated wheat bran by endoxylanases. The glycoside hydrolase (GH) family 10 xylanases GsXyn10A from Geobacillus stearothermophilus and RmXyn10A-CM from Rhodothermus marinus produced the AXOS A3X, A2XX and A2 + 3XX in addition to XOS. RmXyn10A-CM also produced XA2 + 3XX due to its non-conserved aglycone region accommodating additional arabinose substitutions in subsite +2. The GH11 enzymes, Pentopan from Thermomyces lanuginosus and NpXyn11A from Neocallimastix patriciarum had minor structural differences affecting hydrogen bonds in subsites −3 and +3, with similar hydrolysis profiles producing XA3XX as major AXOS and minor amounts of XA2XX but different ratios of X3/X2. In vitro analysis of the prebiotic properties of (A)XOS produced by Pentopan revealed nearly complete uptake of X2 and X3 by the probiotic bacteria Lactobacillus brevis and Bifidobacterium adolescentis. In contrast to previous reports, the GH43 arabinofuranosidase BaAXHd-3 from B. adolescentis cleaved α-1,3-linked arabinose on some single substituted AXOS.


Xylooligosaccharides Endoxylanases Probiotics Arabinofuranosidases Structural bioinformatics 



The authors acknowledge the Lund University Antidiabetic Food Centre (a VINNOVA VINN Excellence Centre) for the funding.

Compliance with ethical standards

This article does not contain any studies with human participants or animals.

Conflict of interest

The authors state that there is no conflict of interest.

Supplementary material

253_2018_8823_MOESM1_ESM.pdf (715 kb)
ESM 1 (PDF 714 kb)


  1. Amaretti A, Bernardi T, Leonardi A, Raimondi S, Zanoni S, Rossi M (2013) Fermentation of xylo-oligosaccharides by Bifidobacterium adolescentis DSMZ 18350: kinetics, metabolism, and β-xylosidase activities. Appl Microbiol Biotechnol 97:3109–3117CrossRefPubMedGoogle Scholar
  2. Andrewartha KA, Phillips DR, Stone BA (1979) Solution properties of wheat-flour arabinoxylans and enzymatically modified arabinoxylans. Carbohydr Res 77:191–204CrossRefGoogle Scholar
  3. Aronsson A, Güler F, Petoukhov MV, Crennell SJ, Svergun DI, Linares-Pastén JA, Karlsson EN (2018) Structural insights of RmXyn10A—a prebiotic-producing GH10 xylanase with a non-conserved aglycone binding region. BBA-Proteins Proteomics 1866:292–306CrossRefPubMedGoogle Scholar
  4. Avia Y, Suzuki N, Kabir AMA, Takagi A, Koga Y (1998) Lactic acid mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 93:2097–2101CrossRefGoogle Scholar
  5. Beaugrand J, Chambat G, Wong V, Goubet F, Remond C, Paës G, Benamrouche S, Debeire P, O’Donohue M, Chabbert B (2004) Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339:2529–2540CrossRefPubMedGoogle Scholar
  6. Benamrouche S, Cronier D, Debeire P, Chabbert B (2002) A chemical and histological study on the effect of (1, 4)-beta-endoxylanase treatment on wheat bran. J Cereal Sci 36:253–260CrossRefGoogle Scholar
  7. Beylot MH, McKie VA, Voragen AG, Doeswijk-Voragen CH, Gilbert HJ (2001) The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem J 358:607–614CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166CrossRefPubMedGoogle Scholar
  9. Bray MR, Clarke AJ (1992) Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 204:191–196CrossRefPubMedGoogle Scholar
  10. Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides and xylooligosaccharides. Crit Rev Food Sci Nutr 51:178–194CrossRefPubMedGoogle Scholar
  11. Christensen EG, Licht TR, Leser TD, Bahl MI (2014) Dietary xylooligosaccharide stimulates intestinal bifidobacteria and lactobacilli but has limited effect on intestinal integrity in rats. BMC Res Notes 7:660CrossRefPubMedGoogle Scholar
  12. de Sá LRV, de Oliveira MAL, Cammarota MC, Matos A, Ferreira-Leitão VS (2011) Simultaneous analysis of carbohydrates and volatile fatty acids by HPLC for monitoring fermentative biohydrogen production. Int J Hydrog Energy 36:15177–15186CrossRefGoogle Scholar
  13. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRefPubMedGoogle Scholar
  14. Ejby M, Freslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou-Hachem M (2013) Structural basis for arabino-xylooligosaccharide capture by the probiotic Bifidobacteria animalis subsp. lactis Bl-04. Mol Microbiol 90:1100–1112CrossRefPubMedGoogle Scholar
  15. Falck P, Aronsson A, Grey C, Stålbrand H, Nordberg Karlsson E, Adlercreutz P (2014) Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresour Technol 174:118–125CrossRefPubMedGoogle Scholar
  16. Finegold SM, Li Z, Summanen PH, Downes J, Thames G, Corbett K, Dowd S, Krak M, Heber D (2014) Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct 5:436–445CrossRefPubMedGoogle Scholar
  17. Izydorczyk MS, Biliaderis CG (1994) Studies on the structure of wheat endosperm arabinoxylans. Carbohydr Polym 24:61–67CrossRefGoogle Scholar
  18. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48CrossRefGoogle Scholar
  19. Kelly WJ, Cookson AL, Altermann E, Lambie SC, Perry R, Teh KH, Otter DE, Shapiro N, Woyke T, Leahy SC (2016) Genomic analysis of three Bifodobacterium species isolated from the calf gastrointestinal tract. Sci Rep 6:30768CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kormelink FJ, Gruppen H, Viëtor RJ, Voragen AG (1993) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249:355–367CrossRefPubMedGoogle Scholar
  21. Krieger E, Vriend G (2014) YASARA view-molecular graphics for all devices-from smartphones to workstations. Bioinformatics 30:2981–2982CrossRefPubMedPubMedCentralGoogle Scholar
  22. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007Google Scholar
  23. Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G (2010) Substrate specificity of three recombinant α-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun 402:644–650CrossRefPubMedGoogle Scholar
  24. Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G (2011) Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl Microbiol Biotechnol 92:1179–1185CrossRefPubMedGoogle Scholar
  25. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786CrossRefPubMedGoogle Scholar
  26. Lasrado LD, Gudipati M (2013) Purification and characterization of β-d-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydr Polym 92:1978–1983CrossRefPubMedGoogle Scholar
  27. Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24:701–714CrossRefPubMedGoogle Scholar
  28. Maes C, Delcour J (2002) Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. J Cereal Sci 35:315–326CrossRefGoogle Scholar
  29. Malunga LN, Beta T (2015) Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viridae or Neocallimastix patriciarum xylanase. Food Chem 167:311–319Google Scholar
  30. Mathew S, Karlsson EN, Adlercreutz P (2017) Extraction of soluble arabinoxylan from enzymatically pretreated wheat bran and production of short xylooligosaccharides and arabinoxylooligosaccharides from arabinoxylan by glycoside hydrolase family 10 and 11 endoxylanases. J Biotechnol 260:53–61CrossRefPubMedGoogle Scholar
  31. McCleary BV, McKie VA, Draga A, Rooney E, Mangan D, Larkin J (2015) Hydrolysis of wheat flour arabinoxylan, acid debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharids by β-xylanase, α-l-arabinofuranosidase and β-xylosidase. Carbohydr Res 407:79–96CrossRefPubMedGoogle Scholar
  32. Meng DD, Ying Y, Chen XH, Lu M, Ning K, Wang LS, Li FL (2015) Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Appl Environ Microbiol 81:2006–2014CrossRefPubMedPubMedCentralGoogle Scholar
  33. Michlmayr H, Hell J, Lorenz C, Böhmdorfer S, Rosenau T, Kneifel W (2013) Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol 79:6747–6754CrossRefPubMedPubMedCentralGoogle Scholar
  34. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  35. Okazaki M, Fujikawa S, Matsumoto N (1990) Effect of xylooligosaccharide on the growth of Bifidobacteria. Bifidobacteria Microflora 9:77–86CrossRefGoogle Scholar
  36. Paës G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592CrossRefPubMedGoogle Scholar
  37. Pan X, Wu T, Zhang L, Cai L, Song Z (2009) Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress conditions. Lett Appl Microbiol 48:362–367CrossRefPubMedGoogle Scholar
  38. Pastell H (2010) Preparation, structural analysis and prebiotic potential of arabinoxylooligosaccahides. Ph.D Thesis. University of Helsinki, pp 31–32Google Scholar
  39. Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M (2009) In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agric Food Chem 57:8598–8606CrossRefPubMedGoogle Scholar
  40. Pell G, Taylor E, Gloster T, Turkenburg J, Fontes C, Ferreira L, Nagy T, Clark S, Davies G, Gilbert H (2004) The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J Biol Chem 279:9597–9605CrossRefPubMedGoogle Scholar
  41. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  42. Pollet A, Delcour JA, Courtin CM (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit Rev Biotechnol 30:176–191CrossRefPubMedGoogle Scholar
  43. Schooneveld-Bergmans MEF, Beldman G, Voragen AGJ (1999) Structural features of (glucurono) arabinoxylans extracted from wheat bran by barium hydroxide. J Cereal Sci 29:63–75CrossRefGoogle Scholar
  44. Sun HJ, Yoshida S, Park NH, Kusakabe I (2002) Preparation of (1→4)-β-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan: suitability of cotton-seed xylan as a starting material for the preparation of (1→4)-β-D-xylooligosaccharides. Carbohydr Res 337:657–661CrossRefPubMedGoogle Scholar
  45. Templeton D, Ehrman T (1995) Determination of acid-insoluble lignin in biomass: chemical analysis and testing task laboratory analytical procedure (LAP–003). National Renewable Energy Laboratory, GoldenGoogle Scholar
  46. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  47. Van Craeyveld V, Swennen K, Dornez E, Van de Wiele T, Marzorati M, Verstraete W, Delaedt Y, Onagbesan O, Decuypere E, Buyse J, De Ketelaere B (2008) Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr 138:2348–2355CrossRefPubMedGoogle Scholar
  48. Van Craeyveld V, Holopainen U, Selinheimo E, Poutanen K, Delcour JA, Courtin CM (2009) Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. J Agric Food Chem 57:8467–8473CrossRefPubMedGoogle Scholar
  49. Van Laere K, Beldman G, Voragen A (1997) A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol 47:231–235CrossRefPubMedGoogle Scholar
  50. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375:1293–1305CrossRefPubMedGoogle Scholar
  51. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243CrossRefPubMedGoogle Scholar
  52. Yui T, Imada K, Shibuya N, Ogawa K (1995) Conformation of an arabinoxylan isolated from the rice endosperm cell wall by X-ray diffraction and a conformational analysis. Biosci Biotechnol Biochem 59:965–968CrossRefPubMedGoogle Scholar
  53. Zhang J, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biotechnology, Department of ChemistryLund UniversityLundSweden

Personalised recommendations