Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 2965–2976 | Cite as

Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects

  • Xue Cai
  • Ines Seitl
  • Wanmeng Mu
  • Tao Zhang
  • Timo Stressler
  • Lutz Fischer
  • Bo Jiang


Trehalose (α-d-glucopyranosyl-(1 → 1)-α-d-glucopyranoside) is a non-reducing disaccharide composed of two glucose molecules linked by an α,α-1,1-glycosidic bond. It possesses physicochemical properties, which account for its biological roles in a variety of prokaryotic and eukaryotic organisms and invertebrates. Intensive studies of trehalose gradually uncovered its functions, and its applications in foods, cosmetics, and pharmaceuticals have increased every year. Currently, trehalose is industrially produced by the two-enzyme method, which was first developed in 1995 using maltooligosyltrehalose synthase (EC and subsequently using maltooligosyltrehalose trehalohydrolase (EC, with starch as the substrate. This biotechnical method has lowered the price of trehalose and expanded its applications. However, when trehalose synthase (EC was later discovered, this method for trehalose production using maltose as the substrate soon became a popular topic because of its simplicity and potential in industrial production. Since then, many trehalose synthases have been studied. This review summarizes the sources and characteristics of reported trehalose synthases, and the most recent advances on structural analysis of trehalose synthase, catalytic mechanism, molecular modification, and usage in industrial production processes.


Trehalose Trehalose synthase Biological production Physicochemical properties Structural analysis 


Funding information

This work was funded by the 863 Project of China (No. 2013AA102102) and the National Natural Science Foundation of China (No. 31371788).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8814_MOESM1_ESM.pdf (164 kb)
ESM 1 (PDF 163 kb).


  1. Arai C, Arai N, Mizote A, Kohno K, Iwaki K, Hanaya T, Arai S, Ushio S, Fukuda S (2010) Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutr Res 30(12):840–848. CrossRefPubMedGoogle Scholar
  2. Argüelles J-C (2014) Why can’t vertebrates synthesize trehalose? J Mol Evol 79(3–4):111–116. CrossRefPubMedGoogle Scholar
  3. Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9(8):1208–1216. CrossRefPubMedGoogle Scholar
  4. Barondeau DP, Getzoff ED (2004) Structural insights into protein-metal ion partnerships. Curr Opin Struct Biol 14(6):765–774. CrossRefPubMedGoogle Scholar
  5. Beblo-Vranesevic K, Galinski EA, Rachel R, Huber H, Rettberg P (2017) Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms. Arch Microbiol 199(1):17–28. CrossRefPubMedGoogle Scholar
  6. Caner S, Nguyen N, Aguda A, Zhang R, Pan YT, Withers SG, Brayer GD (2013) The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology 23(9):1075–1083. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheetham PS (1984) The extraction and mechanism of a novel isomaltulose-synthesizing enzyme from Erwinia rhapontici. Biochem J 220(1):213–220. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207(18):3125–3129. CrossRefPubMedGoogle Scholar
  9. Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 54(19):7098–7104. CrossRefPubMedGoogle Scholar
  10. Cho C-B, Park D-Y, Lee S-B (2017) Effect of C-terminal domain truncation of Thermus thermophilus trehalose synthase on its substrate specificity. Enzym Microb Technol 96:121–126. CrossRefGoogle Scholar
  11. Cho Y-J, Park O-J, Shin H-J (2006) Immobilization of thermostable trehalose synthase for the production of trehalose. Enzym Microb Technol 39(1):108–113. CrossRefGoogle Scholar
  12. Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohydr Chem Biochem 30(C):227–256. CrossRefPubMedGoogle Scholar
  13. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R. CrossRefPubMedGoogle Scholar
  14. Emanuele E (2014) Can trehalose prevent neurodegeneration? Insights from experimental studies. Curr Drug Targets 15(5):551–557. CrossRefPubMedGoogle Scholar
  15. Erich S, Kuschel B, Schwarz T, Ewert J, Böhmer N, Niehaus F, Eck J, Lutz-Wahl S, Stressler T, Fischer L (2015) Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. J Biotechnol 210:27–37. CrossRefPubMedGoogle Scholar
  16. Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082. CrossRefPubMedGoogle Scholar
  17. Filipkowski P, Pietrow O, Panek A, Synowiecki J (2012) Properties of recombinant trehalose synthase from Deinococcus radiodurans expressed in Escherichia coli. Acta Biochim Pol 59(3):425–31PubMedGoogle Scholar
  18. Furuki T, Oku K, Sakurai M (2009) Thermodynamic, hydration and structural characteristics of alpha, alpha-trehalose. Front Biosci 14:3523–3535. CrossRefGoogle Scholar
  19. Gao Y, Xi Y, Lu X-L, Zheng H, Hu B, Liu X-Y, Jiao B-H (2013) Cloning, expression and functional characterization of a novel trehalose synthase from marine Pseudomonas sp. P8005. World J Microbiol Biotechnol 29(11):2195–2206. CrossRefPubMedGoogle Scholar
  20. Gharsallaoui A, Rogé B, Mathlouthi M (2008) Water-disaccharides interactions in saturated solution and the crystallisation conditions. Food Chem 106(4):1329–1339. CrossRefGoogle Scholar
  21. Ikeda M, Bando T, Yamada T, Sato M, Menjyu T, Aoyama A, Sato T, Chen F, Sonobe M, Omasa M, Date H (2015) Clinical application of ET-Kyoto solution for lung transplantation. Surg Today 45(4):439–443. CrossRefPubMedGoogle Scholar
  22. Jiang L, Lin M, Zhang Y, Li Y, Xu X, Li S, He Huang H (2013) Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PLoS One 8(10):e77437. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim TK, Jang JH, Cho HY, Lee HS, Kim YW (2010) Gene cloning and characterization of a trehalose synthase from Corynebacterium glutamicum ATCC13032. Food Sci Biotechnol 19(2):565–569. CrossRefGoogle Scholar
  24. Koh S, Kim J, Shin HJ, Lee D, Bae J, Kim D, Lee DS (2003) Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohydr Res 338(12):1339–1343. CrossRefPubMedGoogle Scholar
  25. Koh S, Shin HJ, Kim JS, Lee DS, Lee SY (1998) Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnol Lett 20(8):757–761. CrossRefGoogle Scholar
  26. Kopjar M, Hribar J, Simcic M, Zlatić E, Pozrl T, Pilizota V (2013) Effect of trehalose addition on volatiles responsible for strawberry aroma. Nat Prod Commun 8(12):1767–1770. PubMedGoogle Scholar
  27. Lee JH, Lee KH, Kim CG, Lee SY, Kim GJ, Park YH, Chung SO (2005) Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol 68(2):213–219. CrossRefPubMedGoogle Scholar
  28. Li N, Wang H, Li L, Cheng H, Liu D, Cheng H, Deng Z (2016) Integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface. J Agric Food Chem 64(31):6179–6187. CrossRefPubMedGoogle Scholar
  29. Li Y, Sun X, Feng Y, Yuan Q (2015) Cloning, expression and activity optimization of trehalose synthase from Thermus thermophilus HB27. Chem Eng Sci 135:323–329. CrossRefGoogle Scholar
  30. Li Y, Wang Z, Feng Y, Yuan Q (2017) Improving trehalose synthase activity by adding the C-terminal domain of trehalose synthase from Thermus thermophilus. Bioresour Technol 245(Pt B):1749–1756. CrossRefPubMedGoogle Scholar
  31. Liang J, Huang R, Huang Y, Wang X, Du L, Wei Y (2013) Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from Thermomonospora curvata DSM 43183. J Mol Catal B Enzym 90:26–32. CrossRefGoogle Scholar
  32. Liang J, Wang S, Ludescher RD (2015) Effect of additives on physicochemical properties in amorphous starch matrices. Food Chem 171:298–305. CrossRefPubMedGoogle Scholar
  33. Loncaric A, Dugalic K, Mihaljevic I, Jakobek L, Pilizota V (2014) Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple purée. J Agric Food Chem 62(7):1674–1682. CrossRefPubMedGoogle Scholar
  34. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79(4):544–567. CrossRefPubMedGoogle Scholar
  35. Ma Y, Xue L, Sun DW (2006) Characteristics of trehalose synthase from permeablized Pseudomonas putida cells and its application in converting maltose into trehalose. J Food Eng 77(2):342–347. CrossRefGoogle Scholar
  36. Martinetti D, Colarossi C, Buccheri S, Denti G, Memeo L, Vicari L (2017) Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomedical Reports 6(3):314–318. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mu W, Li W, Wang X, Zhang T, Jiang B (2014) Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Appl Microbiol Biotechnol 98(15):6569–6582. CrossRefPubMedGoogle Scholar
  38. Neri L, Hernando I, Pérez-Munuera I, Sacchetti G, Mastrocola D, Pittia P (2014) Mechanical properties and microstructure of frozen carrots during storage as affected by blanching in water and sugar solutions. Food Chem 144:65–73. CrossRefPubMedGoogle Scholar
  39. Neta T, Takada K, Hirasawa M (2000) Low-cariogenicity of trehalose as a substrate. J Dent 28(8):571–576. CrossRefPubMedGoogle Scholar
  40. Nishimoto T, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1997) Action of a thermostable trehalose synthase from Thermus aquaticus on sucrose. Biosci Biotechnol Biochem 61(5):898–899. CrossRefPubMedGoogle Scholar
  41. Nishimoto T, Nakano M, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996) Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem 60(4):640–644. CrossRefPubMedGoogle Scholar
  42. Nuccio ML, Wu J, Mowers R, Zhou H-P, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS, Lagrimini LM (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33(8):862–869. CrossRefPubMedGoogle Scholar
  43. Ohguchi M, Kubota N, Wada T, Yoshinaga K, Uritani M, Yagisawa M, Ohishi K, Yamagishi M, Ohta T, Ishikawa K (1997) Purification and properties of trehalose-synthesizing enzyme from Pseudomonas sp. F1. J Ferment Bioeng 84(4):358–360. CrossRefGoogle Scholar
  44. Ohtake S, Wang YJ (2011) Trehalose: current use and future applications. J Pharm Sci 100(6):2020–2053. CrossRefPubMedGoogle Scholar
  45. Olaciregui M, Gil L (2017) Freeze-dried spermatozoa: a future tool? Reprod Domest Anim 52:248–254. CrossRefPubMedGoogle Scholar
  46. Pan YT, Edavana VK, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem 271(21):4259–4269. CrossRefPubMedGoogle Scholar
  47. Panek A, Pietrow O, Synowiecki J, Filipkowski P (2013) Immobilization on magnetic nanoparticles of the recombinant trehalose synthase from Deinococcus geothermalis. Food Bioprod Process 91(4):632–637. CrossRefGoogle Scholar
  48. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59(1):417–441. CrossRefPubMedGoogle Scholar
  49. Portbury SD, Hare DJ, Sgambelloni C, Perronnes K, Portbury AJ, Finkelstein DI, Adlard PA (2017) Trehalose improves cognition in the transgenic Tg2576 mouse model of Alzheimer’s disease. J Alzheimers Dis 60(2):549–560. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12(1):207. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rentschler E, Schwarz T, Stressler T, Fischer L (2016) Development and validation of a screening system for a β-galactosidase with increased specific activity produced by directed evolution. Eur Food Res Technol 242(12):2129–2138. CrossRefGoogle Scholar
  52. Roy R, Usha V, Kermani A, Scott DJ, Hyde EI, Besra GS, Alderwick LJ, Fütterer K (2013) Synthesis of α-glucan in mycobacteria involves a hetero-octameric complex of trehalose synthase TreS and Maltokinase Pep2. ACS Chem Biol 8(10):2245–2255. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6(5):493–502. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20(10):420–425. CrossRefPubMedGoogle Scholar
  55. Schüürmann J, Quehl P, Festel G, Jose J (2014) Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 98(19):8031–8046. CrossRefPubMedGoogle Scholar
  56. Song X, Tang S, Jiang L, Zhu L, Huang H (2016) Integrated biocatalytic process for trehalose production and separation from maltose. Ind Eng Chem Res 55(40):10566–10575. CrossRefGoogle Scholar
  57. Tapia H, Young L, Fox D, Bertozzi CR, Koshland D (2015) Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc Natl Acad Sci 112(19):6122–6127. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13(8):1773–1816. CrossRefPubMedGoogle Scholar
  59. Tewari YB, Goldberg RN (1991) Thermodynamics of hydrolysis of disaccharides. Lactulose, α-d-melibiose, palatinose, d-trehalose, d-turanose and 3-o-β-d -galactopyranosyl-d-arabinose. Biophys Chem 40(1):59–67. CrossRefPubMedGoogle Scholar
  60. Umene S, Hayashi M, Kato K, Masunaga H (2015) Physical properties of root crops treated with novel softening technology capable of retaining the shape, color, and nutritional value of foods. Dysphagia 30(2):105–113. CrossRefPubMedGoogle Scholar
  61. Wada S, Ohba S, Someno T, Hatano M, Nomoto A (2014) Structure and biological properties of lentztrehalose: a novel trehalose analog. J Antibiot 67(4):319–322. CrossRefPubMedGoogle Scholar
  62. Wang J, Ren X, Wang R, Su J, Wang F (2017) Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. J Agric Food Chem 65(35):7726–7735. CrossRefPubMedGoogle Scholar
  63. Wang JH, Tsai MY, Chen JJ, Lee GC, Shaw JF (2007) Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J Agric Food Chem 55(9):3435–3443. CrossRefPubMedGoogle Scholar
  64. Wang YL, Chow SY, Lin YT, Hsieh YC, Lee GC, Liaw SH (2014) Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization. Acta Crystallogr Sect D Biol Crystallogr 70(12):3144–3154. CrossRefGoogle Scholar
  65. Wegener G, Macho C, Schlöder P, Kamp G, Ando O (2010) Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle. J Exp Biol 213(22):3852–3857. CrossRefPubMedGoogle Scholar
  66. Wei Y-T, Zhu Q-X, Luo Z-F, Lu F-S, Chen F-Z, Wang Q-Y, Huang K, Meng J-Z, Wang R, Huang R-B (2004) Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Biochim Biophys Sin Shanghai 36(7):477–484. CrossRefPubMedGoogle Scholar
  67. Williams B, Njaci I, Moghaddam L, Long H, Dickman MB, Zhang X, Mundree S (2015) Trehalose accumulation triggers autophagy during plant desiccation. PLoS Genet 11(12):e1005705. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wu JCY, Hutchings CH, Lindsay MJ, Werner CJ, Bundy BC (2015a) Enhanced enzyme stability through site-directed covalent immobilization. J Biotechnol 193:83–90. CrossRefPubMedGoogle Scholar
  69. Wu T-T, Ko C-C, Chang S-W, Lin S-C, Shaw J-F (2015b) Selective oxidation of glucose for facilitated trehalose purification. Process Biochem 50(6):928–934. CrossRefGoogle Scholar
  70. Wu T-T, Lin S-C, Shaw J-F (2013) Enzymatic processes for the purification of trehalose. Biotechnol Prog 29(1):83–90. CrossRefPubMedGoogle Scholar
  71. Wu XL, Ding HB, Yue M, Qiao Y (2009) Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens. Appl Microbiol Biotechnol 83(3):477–482. CrossRefGoogle Scholar
  72. Xu Z, Li S, Li J, Li Y, Feng X, Wang R, Xu H, Zhou J (2013) The structural basis of Erwinia rhapontici isomaltulose synthase. PLoS One 8(9):e74788. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yan J, Qiao Y, Hu J, Ding H (2013) Cloning, expression and characterization of a trehalose synthase gene from Rhodococcus opacus. Protein J 32(3):223–229. CrossRefPubMedGoogle Scholar
  74. Yu H, Yang S, Yuan C, Hu Q, Li Y, Chen S, Hu Y (2017a) Application of biopolymers for improving the glass transition temperature of hairtail fish meat. J Sci Food Agric.
  75. Yu S, Zhang Y, Zhu Y, Zhang T, Jiang B, Mu W (2017b) Improving the catalytic behavior of DFA I-forming inulin fructotransferase from Streptomyces davawensis with site-directed mutagenesis. J Agric Food Chem 65(34):7579–7587. CrossRefPubMedGoogle Scholar
  76. Yue M, Wu XL, Gong WN, Ding HB (2009) Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei. Microb Cell Factories 8(1):34. CrossRefGoogle Scholar
  77. Zdziebło A, Synowiecki J (2006) Production of trehalose by intramolecular transglucosylation of maltose catalysed by a new enzyme from Thermus thermophilus HB-8. Food Chem 96(1):8–13. CrossRefGoogle Scholar
  78. Zheng J, Chen Y, Yang L, Li M, Zhang J (2014) Preparation of cross-linked enzyme aggregates of trehalose synthase via co-aggregation with polyethyleneimine. Appl Biochem Biotechnol 174(6):2067–2078. CrossRefPubMedGoogle Scholar
  79. Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF (2017) Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 7(1):6198. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, Withers SG (2011) Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis. J Biol Chem 286(41):35601–35609. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang W, Jia M, Yu S, Zhang T, Zhou L, Jiang B, Mu W (2016) Improving the thermostability and catalytic efficiency of the D-psicose 3-epimerase from Clostridium bolteae ATCC BAA-613 using site-directed mutagenesis. J Agric Food Chem 64(17):3386–3393. CrossRefPubMedGoogle Scholar
  82. Zhu Y, Wei D, Zhang J, Wang Y, Xu H, Xing L, Li M (2010) Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber. Extremophiles 14(1):1–8. CrossRefPubMedGoogle Scholar
  83. Zheng Z, Xu Y, Sun Y, Mei W, Ouyang J (2015) Biocatalytic production of trehalose from maltose by using whole cells of permeabilized recombinant Escherichia coli. PLoS One 10(10):e0140477. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Biotechnology and Enzyme Science, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany

Personalised recommendations