Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 3287–3300 | Cite as

Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates

  • Teresa Díaz
  • Sandy Fillet
  • Sonia Campoy
  • Raquel Vázquez
  • Javier Viña
  • José Murillo
  • José L. Adrio
Applied genetics and molecular biotechnology


Improving the yield of carbohydrate to lipid conversion and lipid productivity are two critical goals to develop an economically feasible process to commercialize microbial oils. Lignocellulosic sugars are potential low-cost carbon sources for this process but their use is limited by the toxic compounds produced during biomass pretreatment at high solids loading, and by the pentose sugars (mainly xylose) which are not efficiently metabolized by many microorganisms. Adaptive laboratory evolution was used to select a Rhodosporidium toruloides strain with robust growth in non-detoxified wheat straw hydrolysates, produced at 20% solids loading, and better xylose consumption rate. An arabinose-inducible cre-lox recombination system was developed in this evolved strain that was further engineered to express a second copy of the native DGAT1 and SCD1 genes under control of the native xylose reductase (XYL1) promoter. Fed-batch cultivation of the engineered strain in 7-L bioreactors produced 39.5 g lipid/L at a rate of 0.334 g/Lh−1 and 0.179 g/g yield, the best results reported in R. toruloides with non-detoxified lignocellulosic hydrolysates to date.


Oleaginous yeasts Metabolic engineering Adaptive evolution Wheat straw hydrolysates Rhodosporidium toruloides 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8810_MOESM1_ESM.pdf (302 kb)
ESM 1 (PDF 301 kb).


  1. Adrio JL (2017) Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 114(9):1915–1920. CrossRefPubMedGoogle Scholar
  2. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110(10):2616–1623. CrossRefPubMedGoogle Scholar
  4. Bonturi N, Crucello A, Viana AJC, Miranda EA (2017) Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 57:16–25. CrossRefGoogle Scholar
  5. Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591–604. CrossRefPubMedGoogle Scholar
  6. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T (2014) Global metabolic network organization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 5:3233PubMedGoogle Scholar
  7. Davis R, Tao L, Tan ECD, Biddy MJ, Beckham GT, Scarlata C, Jacobson J, Cafferty K, Ross J, Lucas J, Knorr D, Schoen P (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons NREL/TP-5100-60223. NREL, GoldenCrossRefGoogle Scholar
  8. Den Haan R, Van Zyl WH (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 57(4):521–527. CrossRefGoogle Scholar
  9. Fei Q, O’Brien M, Nelso R, Chen X, Lowell A, Dowe N (2016) Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels 9(1):130. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fillet S, Gibert J, Suarez B, Lara A, Ronchel C, Adrio JL (2015) Fatty alcohol production by oleaginous yeast. J Ind Microbiol Biotechnol 42(11):1463–1472. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fonseca C, Romao R, Rodrigues de Sousa H, Hahn-Hägerdal B, Spencer-Martins I (2007) L-arabinose transport and catabolism in yeast. FEBS J 274(14):3589–3600. CrossRefPubMedGoogle Scholar
  12. Gancedo J (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361PubMedPubMedCentralGoogle Scholar
  13. Gjersing E, Happs RM, Skyes RW, Doeppke C, Davis MF (2013) Rapid determination of sugar content in biomass hydrolysates using nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 110(3):721–728. CrossRefPubMedGoogle Scholar
  14. Goodharzi H, Bennet BD, Amini S, Reaves ML, Hottes AK, Rabinowitz JD, Tavazoie S (2010) Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in Escherichia coli. Mol Syst Biol 6:378Google Scholar
  15. Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100(20):4843–4847. CrossRefPubMedGoogle Scholar
  16. Isikgor F, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559. CrossRefGoogle Scholar
  17. Johns AM, Love J, Aves SJ (2016) Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides. Front Microbiol 7:1666CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulosic formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. CrossRefPubMedGoogle Scholar
  19. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathway, diseases and drugs. Nucleic Acids Res 45:353–361CrossRefGoogle Scholar
  20. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 53:331–338CrossRefGoogle Scholar
  21. Kitahara Y, Yin T, Zhao X, Wachi M, Du W, Liu D (2014) Isolation of oleaginous yeast (Rhodosporidium toruloides) mutants tolerant of sugarcane bagasse hydrolysate. Biosci Biotechnol Biochem 78:336–342CrossRefPubMedGoogle Scholar
  22. Koh CM, Liu Y, Moehninsi DM, Ji L (2014) Molecular characterization of KU70 and KU80 homologes and explotation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiol 14(1):50. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolau S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577. CrossRefGoogle Scholar
  24. Kyle V, Schulte LR, Durret TP, Rezac ME, Vadlani PV (2016) Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 36:942–955CrossRefGoogle Scholar
  25. Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ, Yang F, SunW, Yang X, Zhao ZK (2014) Functional integration of multiple genes into the genome of the oleagionous yeast Rhodosporidium toruloides. FEMS Yeast Res 14(4):547–555Google Scholar
  26. Liu Y, Koh CM, Sun L, Hlaing MM, Du M, Peng N, Li J (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97(2):719–729. CrossRefPubMedGoogle Scholar
  27. Liu Y, Yap SA, Koh CM, Ji L (2016) Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous yeast Rhodotorula (Rhodosporidium) yeast species. Microb Cell Factories 15(1):200. CrossRefGoogle Scholar
  28. Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK (2017) Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 17(2).
  29. Matsakas L, Bonturi N, Miranda EA, Rova U, Christakopoulos P (2015) High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides. Biotechnol Biofuels 8(1):6. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Matsakas L, Novak K, Enman J, Christakopoulos P, Rova U (2017) Acetate-detoxification of wood hydrolysates with alkali tolerant Bacillus sp. as a strategy to enhance the lipid production from Rhodosporidium toruloides. Bioresour Technol.
  31. Minty J, Lesnefsky A, Lin F, Chen Y, Zaroff T, Veloso A, Xie B, McConnell C, Ward R, Schwartz D, Rouillard JM, Gao Y, Gulari E, Lin XN (2011) Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb Cell Factories 10(1):18. CrossRefGoogle Scholar
  32. Najafi N, Hosseini R, Ahmadi AR (2011) Impact of gamma rays on the Phaffia rhodozyma genome revealed by RAPD-PCR. Iran J Microbiol 3(4):216–221PubMedPubMedCentralGoogle Scholar
  33. Park YK, Nicaud JM, Ledesma-Amaro R (2017) The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends Biotecnol.
  34. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16(4):743–762. CrossRefGoogle Scholar
  35. Qi F, Kitara Y, Wang Z, Zhao X, Du W, Liu D (2014) Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolysate. J Chem Technol Biotechnol 89(5):735–742. CrossRefGoogle Scholar
  36. Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar PK, Stephanopoulos G (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65. CrossRefPubMedGoogle Scholar
  37. Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2):173–177. CrossRefPubMedGoogle Scholar
  38. Reider Apel A, Ouellet M, Szmidt-Middelton H, Keasling JD, Mukhopadhyay A (2016) Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep 6(1):19512. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Richard P, Londesborough J, Putkonen M, Halkkinen N, Pentillä M (2001) Cloning and expression of a fungal L-arabinitol-4-dehydrogenase gene. J Biol Chem 276(44):40631–40637. CrossRefPubMedGoogle Scholar
  40. Sánchez-Nogué V, Karhumaa NK (2015) Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 37(4):761–772. CrossRefPubMedGoogle Scholar
  41. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014a) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32(7):1336–1360. CrossRefPubMedGoogle Scholar
  43. Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K (2014b) Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol 41(7):1061–1070. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR, PJ O’B, Cotta MA, Balan V, Jin M, da Costa-Sousa L, Dale B (2016) Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng 113(8):1676–1690. CrossRefPubMedGoogle Scholar
  45. Subtil T, Boles E (2014) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14CrossRefGoogle Scholar
  46. Sun J, Zhao Z, Zhao H, Nair N, Wen F, Xu J, Zhao H (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109(8):2082–2092. CrossRefPubMedGoogle Scholar
  47. Tai M, Stephanopoulos G (2013) Engineering the push and pull lipid biosynthesis in oleaginous yeast Yarrowia lipolytica. Metab Eng 15:1–9. CrossRefPubMedGoogle Scholar
  48. Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6(1):151. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang J, Li R, Lu D, Ma S, Yan Y, Li W (2009) A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J Microbiol Biotechnol 25(5):921–925. CrossRefGoogle Scholar
  50. Wang Y, Lin X, Zhang S, Sun W, Ma S, Zhao ZK (2016) Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Yeast 33(3):99–106. CrossRefPubMedGoogle Scholar
  51. Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104(6):406–411. CrossRefPubMedGoogle Scholar
  52. Xu J, Lin D (2017) Explotation of genus Rhodosporidium for microbial lipid production. World J Microbiol Biotechnol 33(3):54. CrossRefPubMedGoogle Scholar
  53. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140. CrossRefPubMedGoogle Scholar
  54. Zhang S, Skerker J, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016a) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113(5):1056–1066. CrossRefPubMedGoogle Scholar
  55. Zhang S, Ito M, Skerker JM, Arkin AP, Rao CV (2016b) Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 100(21):9393–9405. CrossRefPubMedGoogle Scholar
  56. Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35(6):993–1004. CrossRefPubMedGoogle Scholar
  57. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3(1):1112. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Teresa Díaz
    • 1
  • Sandy Fillet
    • 1
  • Sonia Campoy
    • 1
  • Raquel Vázquez
    • 1
  • Javier Viña
    • 1
  • José Murillo
    • 1
  • José L. Adrio
    • 1
  1. 1.Neol Biosolutions, SAGranadaSpain

Personalised recommendations