Amici AM, Scotti T, Spalla C, Tognoli L (1967) Heterokaryosis and alkaloid production in Claviceps purpurea. Appl Microbiol 15(3):611–615
CAS
PubMed
PubMed Central
Google Scholar
Arcamone F, Bonino C, Chain EB, Ferretti A, Pennella P, Tonolo A, Vero L (1960) Production of lysergic acid derivatives by a strain of Claviceps paspali Stevens and Hall in submerged culture. Nature 187(4733):238–239. https://doi.org/10.1038/187238a0
CAS
Article
PubMed
Google Scholar
Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516. https://doi.org/10.1128/CMR.16.3.497-516.2003
CAS
Article
PubMed
PubMed Central
Google Scholar
Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214
CAS
PubMed
PubMed Central
Google Scholar
Byrne KM, Smith SK, Ondeyka JG (2002) Biosynthesis of nodulisporic acid A: precursor studies. J Am Chem Soc 124(24):7055–7060. https://doi.org/10.1021/ja017183p
CAS
Article
PubMed
Google Scholar
Cawdell-Smith AJ, Scrivener CJ, Bryden WL (2010) Staggers in horses grazing paspalum infected with Claviceps paspali. Aust Vet J 88(10):393–395. https://doi.org/10.1111/j.1751-0813.2010.00624.x
CAS
Article
PubMed
Google Scholar
Chain EB, Bonino C, Tonolo A (1962) Process for the production of alkaloid derivatives of lysergic acid. US Patent Office 3,038,840
Cole RJ, Dorner JW, Lansden JA, Cox RH, Pape C, Cunfer B, Nicholson SS, Bedell DM (1977) Paspalum staggers: isolation and identification of tremorgenic metabolites from sclerotia of Claviceps paspali. J Agric Food Chem 25(5):1197–1201. https://doi.org/10.1021/jf60213a061
CAS
Article
PubMed
Google Scholar
de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839–842. https://doi.org/10.1038/nbt0998-839
Article
PubMed
Google Scholar
di Menna ME, Finch SC, Popay AJ, Smith BL (2012) A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. N Z Vet J 60(6):315–328. https://doi.org/10.1080/00480169.2012.697429
Article
PubMed
Google Scholar
Ehrlich KC, Mack BM (2014) Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Toxins (Basel) 6(6):1916–1928. https://doi.org/10.3390/toxins6061916
CAS
Article
Google Scholar
Esser K, Tudzynski P (1978) Genetics of the ergot fungus Claviceps purpurea: I. Proof of a monoecious life cycle and segregation patterns for mycelial morphology and alkaloid production. Theor Appl Genet 53(4):145–149. https://doi.org/10.1007/BF00273574
CAS
Article
PubMed
Google Scholar
Flieger M, Mehta P, Mehta A (2003) Biotechnological potential of ergot alkaloids. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York, pp 91–99
Google Scholar
Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25(2-3):179–188. https://doi.org/10.1016/0378-1119(83)90223-8
CAS
Article
PubMed
Google Scholar
Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P (2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66(11):1312–1320. https://doi.org/10.1016/j.phytochem.2005.04.011
CAS
Article
PubMed
Google Scholar
Hareven D, Koltin Y (1970) Nuclear distribution in the mycelium of Claviceps and the problem of strain selection. Appl Microbiol 19(6):1005–1006
CAS
PubMed
PubMed Central
Google Scholar
Hulvová H, Galuszka P, Frébortová J, Frébort I (2013) Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol Adv 31(1):79–89. https://doi.org/10.1016/j.biotechadv.2012.01.005
Article
PubMed
Google Scholar
Imlach WL, Finch SC, Zhang Y, Dunlop J, Dalziel JE (2011) Mechanism of action of lolitrem B, a fungal endophyte derived toxin that inhibits BK large conductance Ca2+-activated K+ channels. Toxicon 57(5):686–694. https://doi.org/10.1016/j.toxicon.2011.01.013
CAS
Article
PubMed
Google Scholar
Keller U, Tudzynski P (2002) Ergot Alkaloids. In: Osiewacz HD (ed) Industrial applications. The Mycota (a comprehensive treatise on fungi as experimental systems for basic and applied research), vol 10. Springer, Berlin, pp 157–181. https://doi.org/10.1007/978-3-662-10378-4_8
Google Scholar
Kishimoto S, Sato M, Tsunematsu Y, Watanabe K (2016) Evaluation of biosynthetic pathway and engineered biosynthesis of alkaloids. Molecules 21(8):e1078. https://doi.org/10.3390/molecules21081078
Article
PubMed
Google Scholar
Kunitake E, Tani S, Sumitani J, Kawaguchi T (2013) A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol 97(5):2017–2028. https://doi.org/10.1007/s00253-012-4305-8
CAS
Article
PubMed
Google Scholar
Laws I, Mantle PG (1989) Experimental constraints in the study of the biosynthesis of indole alkaloids in fungi. J Gen Microbiol 135(10):2679–2692. https://doi.org/10.1099/00221287-135-10-2679
CAS
Google Scholar
Liu C, Noike M, Minami A, Oikawa H, Dairi T (2014) A fungal prenyltransferase catalyzes the regular di-prenylation at positions 20 and 21 of paxilline. Biosci Biotechnol Biochem 78(3):448–454. https://doi.org/10.1080/09168451.2014.882759
CAS
Article
PubMed
Google Scholar
McMillan LK, Carr RL, Young CA, Astin JW, Lowe RG, Parker EJ, Jameson GB, Finch SC, Miles CO, McManus OB, Schmalhofer WA, Garcia ML, Kaczorowski GJ, Goetz M, Tkacz JS, Scott B (2003) Molecular analysis of two cytochrome P450 monooxygenase genes required for paxilline biosynthesis in Penicillium paxilli, and effects of paxilline intermediates on mammalian maxi-K ion channels. Mol Gen Genomics 270(1):9–23. https://doi.org/10.1007/s00438-003-0887-2
CAS
Article
Google Scholar
Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48(1):1–17. https://doi.org/10.1007/s00294-005-0578-0
CAS
Article
PubMed
Google Scholar
Nicholson MJ, Koulman A, Monahan BJ, Pritchard BL, Payne GA, Scott B (2009) Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl Environ Microbiol 75(23):7469–7481. https://doi.org/10.1128/AEM.02146-08
CAS
Article
PubMed
PubMed Central
Google Scholar
Nicholson MJ, Eaton CJ, Stärkel C, Tapper BA, Cox MP, Scott B (2015) Molecular cloning and functional analysis of gene clusters for the biosynthesis of indole-diterpenes in Penicillium crustosum and P. janthinellum. Toxins (Basel) 7(8):2701–2722. https://doi.org/10.3390/toxins7082701
CAS
Article
Google Scholar
Păcurar DI, Thordal-Christensen H, Păcurar ML, Pamfil D, Botez C, Bellini C (2011) Agrobacterium tumefaciens: from crown gall tumors to genetic transformation. Physiol Mol Plant Pathol 76(2):76–81. https://doi.org/10.1016/j.pmpp.2011.06.004
Article
Google Scholar
Panaccione DG, Schardl CL (2003) Molecular genetics of ergot alkaloid biosynthesis. In: White JF Jr, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) The clavicipitalean fungi: evolutionary biology, chemistry, biocontrol, and cultural impacts. Marcel-Dekker, New York, pp 399–424. https://doi.org/10.1201/9780203912706.ch13
Google Scholar
Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54(13):4582–4587. https://doi.org/10.1021/jf060626u
CAS
Article
PubMed
Google Scholar
Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28(2):299–314. https://doi.org/10.1111/1365-2435.12076
Article
Google Scholar
Parker EJ, Scott DB (2004) Indole-diterpene biosynthesis in ascomycetous fungi. In: An Z (ed) Handbook of Industrial Mycology, Vol. 22. Marcel Dekker, New York, pp. 405–426
Ricicová A, Flieger M, Rehácek Z (1982) Quantitative changes of the alkaloid complex in a submerged culture of Claviceps paspali. Folia Microbiol (Praha) 27(6):433–445. https://doi.org/10.1007/BF02876456
Article
Google Scholar
Saikia S, Parker EJ, Koulman A, Scott B (2006) Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. FEBS Lett 580(6):1625–1630. https://doi.org/10.1016/j.febslet.2006.02.008
CAS
Article
PubMed
Google Scholar
Saikkonen K, Young CA, Helander M, Schardl CL (2016) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90(6):665–675. https://doi.org/10.1007/s11103-015-0399-6
CAS
Article
PubMed
Google Scholar
Sallam AA, Ayoub NM, Foudah AI, Gissendanner CR, Meyer SA, El Sayed KA (2013) Indole diterpene alkaloids as novel inhibitors of the Wnt/β-catenin pathway in breast cancer cells. Eur J Med Chem 70:594–606. https://doi.org/10.1016/j.ejmech.2013.09.045
CAS
Article
PubMed
Google Scholar
Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids—biology and molecular biology. Alkaloids Chem Biol 63:45–86. https://doi.org/10.1016/S1099-4831(06)63002-2
CAS
Article
PubMed
Google Scholar
Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9(2):e1003323. https://doi.org/10.1371/journal.pgen.1003323
CAS
Article
PubMed
PubMed Central
Google Scholar
Scott B, Young CA, Saikia S, McMillan LK, Monahan BJ, Koulman A, Astin J, Eaton CJ, Bryant A, Wrenn RE, Finch SC, Tapper BA, Parker EJ, Jameson GB (2013) Deletion and gene expression analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli. Toxins (Basel) 5(8):1422–1446. https://doi.org/10.3390/toxins5081422
CAS
Article
Google Scholar
Socic H, Gaberc-Porekar V, Pertot E, Puc A, Milicić S (1986) Developmental studies of Claviceps paspali seed cultures for the submerged production of lysergic acid derivatives. J Basic Microbiol 26(9):533–539. https://doi.org/10.1002/jobm.3620260906
CAS
Article
PubMed
Google Scholar
Thom ER, Popay AJ, Waugh CD, Minne EMK (2014) Impact of novel endophytes in perennial ryegrass on herbage production and insect pests from pastures under dairy cow grazing in northern New Zealand. Grass Forage Sci 69(1):191–204. https://doi.org/10.1111/gfs.12040
CAS
Article
Google Scholar
Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57(5-6):593–605. https://doi.org/10.1007/s002530100801
CAS
Article
PubMed
Google Scholar
Uhlig S, Botha CJ, Vrålstad T, Rolén E, Miles CO (2009) Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle. J Agric Food Chem 57(23):11112–11119. https://doi.org/10.1021/jf902208w
CAS
Article
PubMed
Google Scholar
Uhlig S, Egge-Jacobsen W, Vrålstad T, Miles CO (2014) Indole-diterpenoid profiles of Claviceps paspali and Claviceps purpurea from high-resolution Fourier transform Orbitrap mass spectrometry. Rapid Commun Mass Spectrom 28(14):1621–1634. https://doi.org/10.1002/rcm.6938
CAS
Article
PubMed
Google Scholar
van Engelenburg F, Smit R, Goosen T, van den Broek H, Tudzynski P (1989) Transformation of Claviceps purpurea using a bleomycin resistance gene. Appl Microbiol Biotechnol 30(4):364–370. https://doi.org/10.1007/BF00296625
Article
Google Scholar
Wiewióra B, Żurek G, Pańka D (2015) Is vertical transmission of Neotyphodium lolli in perennial ryegrass the only possible way to the spread of endophytes? PLoS One 10(2):e0117231. https://doi.org/10.1371/journal.pone.0117231
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Orozco R, Wijeratne KEM, Gunatilaka LAA, Stock SP, Molnár I (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15(9):898–907. https://doi.org/10.1016/j.chembiol.2008.07.011
CAS
Article
PubMed
Google Scholar
Xu Y, Orozco R, Wijeratne KEM, Espinosa-Artiles P, Gunatilaka LAA, Stock SP, Molnár I (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol 46(5):353–364. https://doi.org/10.1016/j.fgb.2009.03.001
CAS
Article
PubMed
Google Scholar
Yamada M, Yawata K, Orino Y, Ueda S, Isogai Y, Taguchi G, Shimosaka M, Hashimoto S (2009) Agrobacterium tumefaciens-mediated transformation of antifungal-lipopeptide-producing fungus Coleophoma empetri F-11899. Curr Genet 55(6):623–630. https://doi.org/10.1007/s00294-009-0275-5
CAS
Article
PubMed
Google Scholar
Young C, McMillan L, Telfer E, Scott B (2001) Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39(3):754–764. https://doi.org/10.1046/j.1365-2958.2001.02265.x
CAS
Article
PubMed
Google Scholar
Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Gen Genomics 274(1):13–29. https://doi.org/10.1007/s00438-005-1130-0
CAS
Article
Google Scholar
Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43(10):679–693. https://doi.org/10.1016/j.fgb.2006.04.004
CAS
Article
PubMed
Google Scholar
Young C, Schardl CL, Panaccione DG, Florea S, Takach JE, Charlton ND, Moore N, Webb JS, Jaromczyk J (2015) Genetics, genomics and evolution of ergot alkaloid diversity. Toxins (Basel) 7(4):1273–1302. https://doi.org/10.3390/toxins7041273
CAS
Article
Google Scholar
Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Gen Genomics 268(5):645–655. https://doi.org/10.1007/s00438-002-0780-4
CAS
Google Scholar
Zhang S, Monahan BJ, Tkacz JS, Scott B (2004) Indole-diterpene gene cluster from Aspergillus flavus. Appl Environ Microbiol 70(11):6875–6883. https://doi.org/10.1128/AEM.70.11.6875-6883.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhong YH, Wang XL, Wang TH, Jiang Q (2007) Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 73(6):1348–1354. https://doi.org/10.1007/s00253-006-0603-3
CAS
Article
PubMed
Google Scholar