Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 6, pp 2693–2707 | Cite as

Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass

  • Libertad Adaya
  • Modesto Millán
  • Carlos Peña
  • Dieter Jendrossek
  • Guadalupe Espín
  • Raunel Tinoco-Valencia
  • Josefina Guzmán
  • Daniel Pfeiffer
  • Daniel Segura
Biotechnologically relevant enzymes and proteins
  • 254 Downloads

Abstract

A novel poly-3-hydroxybutyrate depolymerase was identified in Azotobacter vinelandii. This enzyme, now designated PhbZ1, is associated to the poly-3-hydroxybutyrate (PHB) granules and when expressed in Escherichia coli, it showed in vitro PHB depolymerizing activity on native or artificial PHB granules, but not on crystalline PHB. Native PHB (nPHB) granules isolated from a PhbZ1 mutant had a diminished endogenous in vitro hydrolysis of the polyester, when compared to the granules of the wild-type strain. This in vitro degradation was also tested in the presence of free coenzyme A. Thiolytic degradation of the polymer was observed in the nPHB granules of the wild type, resulting in the formation of 3-hydroxybutyryl-CoA, but was absent in the granules of the mutant. It was previously reported that cultures of A. vinelandii OP grown in a bioreactor showed a decrease in the weight average molecular weight (Mw) of the PHB after 20 h of culture, with an increase in the fraction of polymers of lower molecular weight. This decrease was correlated with an increase in the PHB depolymerase activity during the culture. Here, we show that in the phbZ1 mutant, neither the decrease in the Mw nor the appearance of a low molecular weight polymers occurred. In addition, a higher PHB accumulation was observed in the cultures of the phbZ1 mutant. These results suggest that PhbZ1 has a role in the degradation of PHB in cultures in bioreactors and its inactivation allows the production of a polymer of a uniform high molecular weight.

Keywords

Polyhydroxybutyrate Depolymerase Bioplastic Molecular mass 

Notes

Acknowledgements

The authors are grateful to Soledad Moreno and Ramón de Anda for the technical assistance and Déborah Yanajara-Parra for her assistance in the purification of the PHB granules. L. Adaya is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, and was supported by a scholarship from Consejo Nacional de Ciencia y Tecnología (México). This work was supported by grants 255158 and 238535 from Consejo Nacional de Ciencia y Tecnología and IT200415 form Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) DGAPA-UNAM, as well as by a grant of the Deutsche Forschungsgemeinschaft to D. J.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8806_MOESM1_ESM.pdf (136 kb)
ESM 1 (PDF 135 kb)

References

  1. Abe T, Kobayashi T, Saito T (2005) Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol 187:6982–6990CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agus J, Kahar P, Abe H, Doi Y, Tsuge T (2006) Altered expression of polyhydroxyalkanoate synthase gene and its effect on poly[(R)-3-hydroxybutyrate] synthesis in recombinant Escherichia coli. Polym Degrad Stab 91(8):1645–1650.  https://doi.org/10.1016/j.polymdegradstab.2005.12.011 CrossRefGoogle Scholar
  3. Agus J, Kahar P, Hyakutake M, Tomizawa S, Abe H, Tsuge T, Satoh Y, Tajima K (2010) Unusual change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation of PHA-accumulating Escherichia coli. Polym Degrad Stab 95(12):2250–2254.  https://doi.org/10.1016/j.polymdegradstab.2010.09.009 CrossRefGoogle Scholar
  4. Alexeyev MF, Shokolenko IN, Croughan TP (1995) Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160(1):63–67.  https://doi.org/10.1016/0378-1119(95)00108-I CrossRefPubMedGoogle Scholar
  5. Aoyagi Y, Doi Y, Iwata T (2003) Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: effects of annealing and two-step drawing. Polym Degrad Stab 79(2):209–216.  https://doi.org/10.1016/S0141-3910(02)00273-2 CrossRefGoogle Scholar
  6. Arias S, Bassas-Galia M, Molinari G, Timmis KN (2013) Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microb Biotechnol 6(5):551–563.  https://doi.org/10.1111/1751-7915.12040 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arikawa H, Sato S, Fujiki T, Matsumoto K (2016) A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16. J Biotechnol 227:94–102.  https://doi.org/10.1016/j.jbiotec.2016.04.004 CrossRefPubMedGoogle Scholar
  8. Asenjo JA, Schmidt AS, Andersen PR, Andrews BA (1995) Effect of single nutrient limitation of poly-beta-hydroxybutyrate molecular weight distribution in Alcaligens europhus. Biotechnol Bioeng 46(5):497–502.  https://doi.org/10.1002/bit.260460514 CrossRefPubMedGoogle Scholar
  9. Bali A, Blanco G, Hill S, Kennedy C (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58(5):1711–1718PubMedPubMedCentralGoogle Scholar
  10. Bishop PE, Brill WJ (1977) Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. J Bacteriol 130(2):954–956PubMedPubMedCentralGoogle Scholar
  11. Bocanegra JK, Da Cruz Pradella JG, Da Silva LF, Taciro MK, Gomez JGC (2013) Influence of pH on the molecular weight of poly-3-hydroxybutyric acid (P3HB) produced by recombinant Escherichia coli. Appl Biochem Biotechnol 170(6):1336–1347.  https://doi.org/10.1007/s12010-013-0257-4 CrossRefPubMedGoogle Scholar
  12. Bush JA, Wilson PW (1959) A non-gummy chromogenic strain of Azotobacter vinelandii. Nature 184(4683):381.  https://doi.org/10.1038/184381a0 CrossRefGoogle Scholar
  13. Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100(7):2265–2270.  https://doi.org/10.1016/j.biortech.2008.11.020 CrossRefPubMedGoogle Scholar
  14. Castañeda M, Guzmán J, Moreno S, Espín G (2000) The GacS sensor kinase regulates alginate and poly-β-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol 182(9):2624–2628.  https://doi.org/10.1128/JB.182.9.2624-2628.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Centeno-Leija S, Huerta-Beristain G, Giles-Gómez M, Bolivar F, Gosset G, Martínez A (2014) Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Antonie Van Leeuwenhoek 105(4):687–696.  https://doi.org/10.1007/s10482-014-0124-5 CrossRefPubMedGoogle Scholar
  16. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38(8):2434–2446.  https://doi.org/10.1039/b812677c CrossRefPubMedGoogle Scholar
  17. Chen G, Page WJ (1994) The effect of substrate on the molecular weight of poly-β-hydroxybutyrate produced by Azotobacter vinelandii UWD. Biotechnol Lett 16(2):155–160.  https://doi.org/10.1007/BF01021663 CrossRefGoogle Scholar
  18. De Koning GJM, Lemstra PJ (1993) Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer 34(19):4089–4094.  https://doi.org/10.1016/0032-3861(93)90671-V CrossRefGoogle Scholar
  19. Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol Lett 67(1-2):165–170.  https://doi.org/10.1111/j.1574-6968.1990.tb13856.x CrossRefGoogle Scholar
  20. Eggers J, Steinbüchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme a (CoA) via crotonyl-CoA. J Bacteriol 195(14):3213–3223.  https://doi.org/10.1128/JB.00358-13 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gebauer B, Jendrossek D (2006) Assay of poly(3-hydroxybutyrate) depolymerase activity and product determination. Appl Environ Microbiol 72(9):6094–6100.  https://doi.org/10.1128/AEM.01184-06 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Handrick R, Reinhardt S, Jendrossek D (2000) Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. J Bacteriol 182:5916–5918CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hernández-Eligio A, Castellanos M, Moreno S, Espín G (2011) Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS. Microbiology 157(11):3014–3023.  https://doi.org/10.1099/mic.0.051649-0 CrossRefPubMedGoogle Scholar
  24. Hernández-Eligio A, Moreno S, Castellanos M, Castañeda M, Nuñez C, Muriel-Millán LF, Espín G (2012) RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiol (United Kingdom) 158:1953–1963Google Scholar
  25. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 78:3177–3184CrossRefPubMedPubMedCentralGoogle Scholar
  26. Horowitz DM, Sanders JKM (1994) Amorphous, biomimetic granules of polyhydroxybutyrate: preparation, characterization, and biological implications. J Am Chem Soc 116(7):2695–2702.  https://doi.org/10.1021/ja00086a001 CrossRefGoogle Scholar
  27. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56(1):403–432.  https://doi.org/10.1146/annurev.micro.56.012302.160838 CrossRefPubMedGoogle Scholar
  28. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16(8):2357–2372.  https://doi.org/10.1111/1462-2920.12356 CrossRefPubMedGoogle Scholar
  29. Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J (2000) Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39(14):3927–3936.  https://doi.org/10.1021/bi9928086 CrossRefPubMedGoogle Scholar
  30. Kennedy C, Gamal R, Humphrey R, Ramos J, Brigle K, Dean D (1986) The nifH, nifM and nifN genes of Azotobacter vinelandii: characterisation by Tn5 mutagenesis and isolation from pLAFR1 gene banks. Mol Gen Genet 205(2):318–325.  https://doi.org/10.1007/BF00430445 CrossRefGoogle Scholar
  31. Kobayashi T, Saito T (2003) Catalytic triad of intracellular poly(3-Hydroxybutyrate) depolymerase (PhaZ1) in Ralstonia eutropha H16. J Biosci Bioeng 96(5):487–492.  https://doi.org/10.1016/S1389-1723(03)70136-4 CrossRefPubMedGoogle Scholar
  32. Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T (2003) Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 185:3485–3490CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kobayashi T, Uchino K, Abe T, Yamazaki Y, Saito T (2005) Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16. J Bacteriol 187:5129–5135CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kusaka S, Iwata T, Doi Y (1999) Properties and biodegradability of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] produced by a recombinant Escherichia coli. Int J Biol Macromol 25(1-3):87–94.  https://doi.org/10.1016/S0141-8130(99)00019-7 CrossRefPubMedGoogle Scholar
  35. Law JH, Slepecky RA (1961) Assay of poly-beta-hydroxybutyric acid. J Bacteriol 82:33–36PubMedPubMedCentralGoogle Scholar
  36. Lowry OH, Rosenbrough NJ, Farr AL, Randall RL (1951) Protein measurement with the folin reagent. J Biol Chem 193(3):265–275PubMedGoogle Scholar
  37. Manchak J, Page WJ (1994) Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140(4):953–963.  https://doi.org/10.1099/00221287-140-4-953 CrossRefGoogle Scholar
  38. Millán M, Segura D, Galindo E, Peña C (2016) Molecular mass of poly-3-hydroxybutyrate (P3HB) produced by Azotobacter vinelandii is determined by the ratio of synthesis and degradation under fixed dissolved oxygen tension. Process Biochem 51(8):950–958.  https://doi.org/10.1016/j.procbio.2016.04.013 CrossRefGoogle Scholar
  39. Muriel-Millán LF, Castellanos M, Hernandez-Eligio JA, Moreno S, Espín G (2014) Posttranscriptional regulation of PhbR, the transcriptional activator of polyhydroxybutyrate synthesis, by iron and the sRNA ArrF in Azotobacter vinelandii. Appl Microbiol Biotechnol 98:2173–2182CrossRefPubMedGoogle Scholar
  40. Myshkina VL, Nikolaeva DA, Makhina TK, Bonartsev AP, Bonartseva GA (2008) Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Appl Biochem Microbiol 44(5):482–486.  https://doi.org/10.1134/S0003683808050050 CrossRefGoogle Scholar
  41. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I (2015) Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 90:1209–1221CrossRefGoogle Scholar
  42. Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espín G (2008) Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol 15(4):244–254.  https://doi.org/10.1159/000108658 CrossRefPubMedGoogle Scholar
  43. Peña C, López S, García A, Espín G, Romo-Uribe A, Segura D (2014) Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN). Ann Microbiol 64(1):39–47.  https://doi.org/10.1007/s13213-013-0630-0 CrossRefGoogle Scholar
  44. Peralta-Gil M, Segura D, Guzmán J, Servín-González L, Espín G (2002) Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184:5672–5677CrossRefPubMedPubMedCentralGoogle Scholar
  45. Quagliano JC, Miyazaki SS (1997) Effect of aeration and carbon/nitrogen ratio on the molecular mass of the biodegradable polymer poly-ß-hydroxybutyrate obtained from Azotobacter chroococcum. Appl Microbiol Biotechnol 48(5):662–664.  https://doi.org/10.1007/s002530051112 CrossRefGoogle Scholar
  46. Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1-2):91–108.  https://doi.org/10.1159/000142897 CrossRefPubMedGoogle Scholar
  47. Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33.  https://doi.org/10.1042/bj20031254 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ren Q, De Roo G, Ruth K, Witholt B, Zinn M, Thöny-Meyer L (2009) Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Biomacromolecules 10(4):916–922.  https://doi.org/10.1021/bm801431c CrossRefPubMedGoogle Scholar
  49. Saegusa H, Shiraki M, Kanai C, Saito T (2001) Cloning of an intracellular poly[D(−)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol 183(1):94–100.  https://doi.org/10.1128/JB.183.1.94-100.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Saegusa H, Shiraki M, Saito T (2002) Cloning of an intracellular D(−)-hydroxybutyrate-oligomer hydrolase gene from Ralstonia eutropha H16 and identification of the active site serine residue by site-directed mutagenesis. J Biosci Bioeng 94(2):106–112.  https://doi.org/10.1016/S1389-1723(02)80128-1 CrossRefPubMedGoogle Scholar
  51. Sambrook JF, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 2100Google Scholar
  52. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  53. Segura D, Cruz T, Espín G (2003) Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in polyhydroxybutyrate synthesis. Arch Microbiol 179:437–443CrossRefPubMedGoogle Scholar
  54. Shimizu H, Tamura S, Shioya S, Suga K-I (1993) Kinetic study of poly-D (−)-3-hydroxybutyric acid (PHB) production and its molecular weight distribution control in a fed-batch culture of Alcaligenes eutrophus. J Ferment Bioeng 76(6):465–469.  https://doi.org/10.1016/0922-338X(93)90242-Z CrossRefGoogle Scholar
  55. Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol 15(1):63–67.  https://doi.org/10.1038/nbt0197-63 CrossRefPubMedGoogle Scholar
  56. Solaiman DKY, Ashby RD, Foglia TA (2003) Effect of inactivation of poly(hydroxyalkanoates) depolymerase gene on the properties of poly(hydroxyalkanoates) in Pseudomonas resinovorans. Appl Microbiol Biotechnol 62(5-6):536–543.  https://doi.org/10.1007/s00253-003-1317-4 CrossRefPubMedGoogle Scholar
  57. Sznajder A, Jendrossek D (2014) To be or not to be a poly(3-Hydroxybutyrate) (PHB) depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, highly active PHB depolymerases with no detectable role in mobilization of accumulated PHB. Appl Environ Microbiol 80(16):4936–4946.  https://doi.org/10.1128/AEM.01056-14 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sznajder A, Pfeiffer D, Jendrossek D (2015) Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16. Appl Environ Microbiol 81(5):1847–1858.  https://doi.org/10.1128/AEM.03791-14 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tirapelle EF, Müller-Santos M, Tadra-Sfeir MZ, Kadowaki MAS, Steffens MBR, Monteiro RA, Souza EM, Pedrosa FO, Chubatsu LS (2013) Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1—old partners, new players. PLoS One 8(9):e75066.  https://doi.org/10.1371/journal.pone.0075066 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tsuge T (2016) Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J 48(11):1051–1057.  https://doi.org/10.1038/pj.2016.78 CrossRefGoogle Scholar
  61. Uchino K, Saito T (2006) Thiolysis of poly(3-hydroxybutyrate) with polyhydroxyalkanoate synthase from Ralstonia eutropha. J Biochem 139(3):615–621.  https://doi.org/10.1093/jb/mvj069 CrossRefPubMedGoogle Scholar
  62. Uchino K, Saito T, Gebauer B, Jendrossek D (2007) Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme a (CoA) and degradation of PHB to acetyl-CoA. J Bacteriol 189(22):8250–8256.  https://doi.org/10.1128/JB.00752-07 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74:1058–1063CrossRefPubMedGoogle Scholar
  64. Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substit Immobil Biotechnol 37(1):1–12.  https://doi.org/10.1080/10731190802664429 CrossRefPubMedGoogle Scholar
  65. Yan Y, Wu Q, Zhang R (2000) Dynamic accumulation and degradation of poly(3-hydroxyalkanoate)s in living cells of Azotobacter vinelandii UWD characterized by 13 C NMR. FEMS Microbiol Lett 193:269–273CrossRefPubMedGoogle Scholar
  66. York GM, Lupberger J, Tian J, Lawrence AG, Stubbe J, Sinskey AJ (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(−)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185(13):3788–3794.  https://doi.org/10.1128/JB.185.13.3788-3794.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zheng Z, Li M, Xue XJ, Tian HL, Li Z, Chen GQ (2006) Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation. Appl Microbiol Biotechnol 72(5):896–905.  https://doi.org/10.1007/s00253-006-0371-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Libertad Adaya
    • 1
  • Modesto Millán
    • 2
  • Carlos Peña
    • 2
  • Dieter Jendrossek
    • 3
  • Guadalupe Espín
    • 1
  • Raunel Tinoco-Valencia
    • 2
  • Josefina Guzmán
    • 1
  • Daniel Pfeiffer
    • 4
  • Daniel Segura
    • 1
  1. 1.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  3. 3.Institute of MicrobiologyUniversity StuttgartStuttgartGermany
  4. 4.Department of MicrobiologyUniversity of BayreuthBayreuthGermany

Personalised recommendations