Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 8, pp 3439–3451 | Cite as

Genome-scale biological models for industrial microbial systems

  • Nan Xu
  • Chao Ye
  • Liming LiuEmail author
Mini-Review

Abstract

The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

Keywords

Genome-scale modeling Systematic metabolic engineering Cell growth Microbial biosynthesis 

Notes

Author contributions

N.X. and L.L. conceived the project. N.X. and C.Y. collected data. N.X., L.L., and C.Y. wrote the manuscript.

Funding information

This study was funded by the National Program for Support of Top-notch Young Professionals, the National Natural Science Foundation of China (21422602), and the Postdoctoral Science Foundation of Jiang Su (1701140C).

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acevedo A, Aroca G, Conejeros R (2014) Genome-scale NAD(H/(+)) availability patterns as a differentiating feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in relation to fermentative metabolism. PLoS One 9(1):e87494.  https://doi.org/10.1371/journal.pone.0087494 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980.  https://doi.org/10.1371/journal.pcbi.1002980 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alam MT, Medema MH, Takano E, Breitling R (2011) Comparative genome-scale metabolic modeling of actinomycetes: the topology of essential core metabolism. FEBS Lett 585(14):2389–2394.  https://doi.org/10.1016/j.febslet.2011.06.014 PubMedCrossRefGoogle Scholar
  4. Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14(1):35–48.  https://doi.org/10.1038/nrg3356 PubMedCrossRefGoogle Scholar
  5. Appukuttan D, Singh H, Park SH, Jung JH, Jeong S, Seo HS, Choi YJ, Lim S (2016) Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558. Appl Environ Microbiol 82(4):1154–1166.  https://doi.org/10.1128/aem.03371-15 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atlas JC, Nikolaev EV, Browning ST, Shuler ML (2008) Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication. IET Syst Biol 2(5):369–382.  https://doi.org/10.1049/iet-syb:20070079 PubMedCrossRefGoogle Scholar
  7. Barua D, Kim J, Reed JL (2010) An automated phenotype-driven approach (GeneForce) for refining metabolic and regulatory models. PLoS Comput Biol 6(10):e1000970.  https://doi.org/10.1371/journal.pcbi.1000970 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci U S A 106(Suppl 1):9995–10000.  https://doi.org/10.1073/pnas.0901522106 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bommareddy RR, Sabra W, Maheshwari G, Zeng AP (2015) Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Factories 14(1):36.  https://doi.org/10.1186/s12934-015-0217-5 CrossRefGoogle Scholar
  10. Brazhnik P, de la Fuente A, Mendes P (2002) Gene networks: how to put the function in genomics. Trends Biotechnol 20(11):467–472.  https://doi.org/10.1016/S0167-7799(02)02053-X PubMedCrossRefGoogle Scholar
  11. Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158.  https://doi.org/10.1016/j.ymben.2014.07.009 PubMedCrossRefGoogle Scholar
  12. Carrera J, Estrela R, Luo J, Rai N, Tsoukalas A, Tagkopoulos I (2014) An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol Syst Biol 10(7):735.  https://doi.org/10.15252/msb.20145108 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO (2013) Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340(6137):1220–1223.  https://doi.org/10.1126/science.1234012 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N (2016) Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels 9(1):9.  https://doi.org/10.1186/s13068-015-0418-5 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chindelevitch L, Stanley S, Hung D, Regev A, Berger B (2012) MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis. Genome Biol 13(1):R6.  https://doi.org/10.1186/gb-2012-13-1-r6 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cho YR, Zhang A (2010) Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins. BMC Bioinforma 11(Suppl 3):S3.  https://doi.org/10.1186/1471-2105-11-S3-S3 CrossRefGoogle Scholar
  17. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24(18):2044–2050.  https://doi.org/10.1093/bioinformatics/btn352 PubMedCrossRefGoogle Scholar
  18. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295(5560):1669–1678.  https://doi.org/10.1126/science.1069883 PubMedCrossRefGoogle Scholar
  19. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807.  https://doi.org/10.1371/journal.pcbi.1000807 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Erdrich P, Steuer R, Klamt S (2015) An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. BMC Syst Biol 9(1):48.  https://doi.org/10.1186/s12918-015-0191-x PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fan S, Zhang Z, Zou W, Huang Z, Liu J, Liu L (2014) Development of a minimal chemically defined medium for Ketogulonicigenium vulgare WSH001 based on its genome-scale metabolic model. J Biotechnol 169:15–22.  https://doi.org/10.1016/j.jbiotec.2013.10.027 PubMedCrossRefGoogle Scholar
  22. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246.  https://doi.org/10.1038/340245a0 PubMedCrossRefGoogle Scholar
  23. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb J-F, Dougherty BA, Merrick JM, McKenney K, Sutton G, Fitzhugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512.  https://doi.org/10.1126/science.7542800 PubMedCrossRefGoogle Scholar
  24. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253.  https://doi.org/10.1101/gr.234503 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Franklin O, Hall EK, Kaiser C, Battin TJ, Richter A (2011) Optimization of biomass composition explains microbial growth-stoichiometry relationships. Am Nat 177(2):E29–E42.  https://doi.org/10.1086/657684 PubMedCrossRefGoogle Scholar
  26. Ganter M, Bernard T, Moretti S, Stelling J, Pagni M (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 29(6):815–816.  https://doi.org/10.1093/bioinformatics/btt036 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Garcia Sanchez CE, Vargas Garcia CA, Torres Saez RG (2012) Predictive potential of flux balance analysis of Saccharomyces cerevisiae using as optimization function combinations of cell compartmental objectives. PLoS One 7(8):e43006.  https://doi.org/10.1371/journal.pone.0043006 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gelfand MS (2006) Evolution of transcriptional regulatory networks in microbial genomes. Curr Opin Struct Biol 16(3):420–429.  https://doi.org/10.1016/j.sbi.2006.04.001 PubMedCrossRefGoogle Scholar
  29. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Meta Eng 7(4):291–301.  https://doi.org/10.1016/j.ymben.2005.05.001 CrossRefGoogle Scholar
  30. Gerstl MP, Klamt S, Jungreuthmayer C, Zanghellini J (2016) Exact quantification of cellular robustness in genome-scale metabolic networks. Bioinformatics 32(5):730–737.  https://doi.org/10.1093/bioinformatics/btv649 PubMedCrossRefGoogle Scholar
  31. Hashemifar S, Xu J (2014) HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks. Bioinformatics 30(17):i438–i444.  https://doi.org/10.1093/bioinformatics/btu450 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10(6):R69.  https://doi.org/10.1186/gb-2009-10-6-r69 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982.  https://doi.org/10.1038/nbt.1672 PubMedCrossRefGoogle Scholar
  34. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420(6912):186–189.  https://doi.org/10.1038/nature01149 PubMedCrossRefGoogle Scholar
  35. Imam S, Noguera DR, Donohue TJ (2015) An integrated approach to reconstructing genome-scale transcriptional regulatory networks. PLoS Comput Biol 11(2):e1004103.  https://doi.org/10.1371/journal.pcbi.1004103 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7(3):198–210.  https://doi.org/10.1038/nrm1857 PubMedCrossRefGoogle Scholar
  37. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B Jr, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401.  https://doi.org/10.1016/j.cell.2012.05.044 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623.  https://doi.org/10.1016/j.copbio.2011.10.007 PubMedCrossRefGoogle Scholar
  39. King ZA, Lloyd CJ, Feist AM, Palsson BO (2015) Next-generation genome-scale models for metabolic engineering. Curr Opin Biotechnol 35:23–29.  https://doi.org/10.1016/j.copbio.2014.12.016 PubMedCrossRefGoogle Scholar
  40. Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837.  https://doi.org/10.1038/nrg1471 PubMedCrossRefGoogle Scholar
  41. Klitgord N, Segre D (2010) The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles. Genome Inf 22:41–55Google Scholar
  42. Krakauer DC, Plotkin JB (2002) Redundancy, antiredundancy, and the robustness of genomes. Proc Natl Acad Sci U S A 99(3):1405–1409.  https://doi.org/10.1073/pnas.032668599 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804.  https://doi.org/10.1126/science.1075090 PubMedCrossRefGoogle Scholar
  44. Lee KY, Park JM, Kim TY, Yun H, Lee SY (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Factories 9(1):94.  https://doi.org/10.1186/1475-2859-9-94 CrossRefGoogle Scholar
  45. Lee H, DeLoache WC, Dueber JE (2012) Spatial organization of enzymes for metabolic engineering. Meta Eng 14(3):242–251.  https://doi.org/10.1016/j.ymben.2011.09.003 CrossRefGoogle Scholar
  46. Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, Schrimpe-Rutledge AC, Smith RD, Adkins JN, Zengler K, Palsson BO (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3(1):929.  https://doi.org/10.1038/Ncomms1928 PubMedCrossRefGoogle Scholar
  47. Li RD, Li YY, Lu LY, Ren C, Li YX, Liu L (2011) An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis. BMC Syst Biol 5(Suppl 1):S12.  https://doi.org/10.1186/1752-0509-5-S1-S12 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Li S, Liu L, Chen J (2015) Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab Eng 28:1–7.  https://doi.org/10.1016/j.ymben.2014.11.008 PubMedCrossRefGoogle Scholar
  49. Lim HG, Lim JH, Jung GY (2015) Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures. Biotechnol Biofuels 8(1):137.  https://doi.org/10.1186/s13068-015-0327-7 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lo YS, Huang SH, Luo YC, Lin CY, Yang JM (2015) Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping. PLoS One 10(1):e0116347.  https://doi.org/10.1371/journal.pone.0116347 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13(12):787–794.  https://doi.org/10.1038/nrmicro3565 PubMedCrossRefGoogle Scholar
  52. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423(6936):185–190.  https://doi.org/10.1038/nature01556 PubMedCrossRefGoogle Scholar
  53. Lopes H, Rocha I (2017) Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res 17(5).  https://doi.org/10.1093/femsyr/fox050
  54. Ma S, Minch KJ, Rustad TR, Hobbs S, Zhou SL, Sherman DR, Price ND (2015) Integrated modeling of gene regulatory and metabolic networks in Mycobacterium tuberculosis. PLoS Comput Biol 11(11):e1004543.  https://doi.org/10.1371/journal.pcbi.1004543 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428):751–753.  https://doi.org/10.1126/science.285.5428.751 PubMedCrossRefGoogle Scholar
  56. McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9(1):9.  https://doi.org/10.1038/msb.2013.18 Google Scholar
  57. Mienda BS (2017) Genome-scale metabolic models as platforms for strain design and biological discovery. J Biomol Struct Dyn 35(9):1863–1873.  https://doi.org/10.1080/07391102.2016.1197153 PubMedCrossRefGoogle Scholar
  58. Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5(1):130.  https://doi.org/10.1186/1752-0509-5-130 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597.  https://doi.org/10.1073/pnas.1218447110 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628.  https://doi.org/10.1038/nmeth.1226 PubMedCrossRefGoogle Scholar
  61. Nicholson JK, Wilson ID (2003) Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2(8):668–676.  https://doi.org/10.1038/nrd1157 PubMedCrossRefGoogle Scholar
  62. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197.  https://doi.org/10.1016/j.cell.2016.02.004 PubMedCrossRefGoogle Scholar
  63. Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Russmayer H, Pflugl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D (2014) Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng 24:129–138.  https://doi.org/10.1016/j.ymben.2014.05.011 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320.  https://doi.org/10.1038/msb.2009.77 PubMedPubMedCentralCrossRefGoogle Scholar
  65. O'Brien EJ, Palsson BO (2015) Computing the functional proteome: recent progress and future prospects for genome-scale models. Curr Opin Biotechnol 34:125–134.  https://doi.org/10.1016/j.copbio.2014.12.017 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282(39):28791–28799.  https://doi.org/10.1074/jbc.M703759200 PubMedCrossRefGoogle Scholar
  67. Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105(3):439–460.  https://doi.org/10.1002/bit.22592 PubMedCrossRefGoogle Scholar
  68. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532.  https://doi.org/10.1038/nature12051 PubMedCrossRefGoogle Scholar
  69. Papanikolaou N, Pavlopoulos GA, Theodosiou T, Iliopoulos I (2015) Protein-protein interaction predictions using text mining methods. Methods 74:47–53.  https://doi.org/10.1016/j.ymeth.2014.10.026 PubMedCrossRefGoogle Scholar
  70. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):7797–7802.  https://doi.org/10.1073/pnas.0702609104 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pentjuss A, Odzina I, Kostromins A, Fell DA, Stalidzans E, Kalnenieks U (2013) Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism. J Biotechnol 165(1):1–10.  https://doi.org/10.1016/j.jbiotec.2013.02.014 PubMedCrossRefGoogle Scholar
  72. Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29(2):153–159.  https://doi.org/10.1038/ng724 PubMedCrossRefGoogle Scholar
  73. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3):218–229.  https://doi.org/10.1006/meth.2001.1183 PubMedCrossRefGoogle Scholar
  74. Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63(3):490–500.  https://doi.org/10.1002/prot.20865 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10(4):435–449.  https://doi.org/10.1093/bib/bbp011 PubMedCrossRefGoogle Scholar
  76. Riemer S, Rex R, Schomburg D (2013) A metabolite-centric view on flux distributions in genome-scale metabolic models. BMC Syst Biol 7(1):33.  https://doi.org/10.1186/1752-0509-7-33 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307.  https://doi.org/10.1038/nprot.2011.308 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18(12):1257–1261.  https://doi.org/10.1038/82360 PubMedCrossRefGoogle Scholar
  79. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117.  https://doi.org/10.1073/pnas.232349399 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147.  https://doi.org/10.1007/s10295-008-0481-z PubMedCrossRefGoogle Scholar
  81. Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42(3):327–338.  https://doi.org/10.1007/s10295-014-1576-3 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Srinivasan S, Cluett WR, Mahadevan R (2015) Constructing kinetic models of metabolism at genome-scales: a review. Biotechnol J 10(9):1345–1359.  https://doi.org/10.1002/biot.201400522 PubMedCrossRefGoogle Scholar
  83. Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301.  https://doi.org/10.1038/msb.2009.56 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tan J, Zuniga C, Zengler K (2015) Unraveling interactions in microbial communities—from co-cultures to microbiomes. J Microbiol 53(5):295–305.  https://doi.org/10.1007/s12275-015-5060-1 PubMedCrossRefGoogle Scholar
  85. Thattai M (2016) Universal Poisson statistics of mRNAs with complex decay pathways. Biophys J 110(2):301–305.  https://doi.org/10.1016/j.bpj.2015.12.001 PubMedCrossRefGoogle Scholar
  86. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20(5):433–440.  https://doi.org/10.1002/(sici)1521-1878(199805)20:5<433::aid-bies10>3.0.co;2-2 PubMedCrossRefGoogle Scholar
  87. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121.  https://doi.org/10.1038/nprot.2009.203 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Thor S, Peterson JR, Luthey-Schulten Z (2017) Genome-scale metabolic modeling of archaea lends insight into diversity of metabolic function. Arch Int Microbiol J 2017:1–18.  https://doi.org/10.1155/2017/9763848 Google Scholar
  89. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA 3rd (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15(1):72–84.  https://doi.org/10.1093/bioinformatics/15.1.72 PubMedCrossRefGoogle Scholar
  90. Trinh CT, Li J, Blanch HW, Clark DS (2011) Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol 77(14):4894–4904.  https://doi.org/10.1128/aem.00382-11 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Utrilla J, O'Brien EJ, Chen K, McCloskey D, Cheung J, Wang H, Armenta-Medina D, Feist AM, Palsson BO (2016) Global rebalancing of cellular resources by pleiotropic point mutations illustrates a multi-scale mechanism of adaptive evolution. Cell Sys 2(4):260–271.  https://doi.org/10.1016/j.cels.2016.04.003 CrossRefGoogle Scholar
  92. van Dam JC, Schaap PJ, Martins dos Santos VA, Suarez-Diez M (2014) Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC Syst Biol 8(1):111.  https://doi.org/10.1186/s12918-014-0111-5 PubMedPubMedCentralCrossRefGoogle Scholar
  93. van der Ark KCH, van Heck RGA, Dos Santos VAPM, Belzer C, de Vos WM (2017) More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome 5(1):78.  https://doi.org/10.1186/s40168-017-0299-x PubMedPubMedCentralCrossRefGoogle Scholar
  94. Vivek-Ananth RP, Samal A (2016) Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems 147:1–10.  https://doi.org/10.1016/j.biosystems.2016.06.001 PubMedCrossRefGoogle Scholar
  95. Wang X, Gao H, Shen Y, Weinstock GM, Zhou J, Palzkill T (2008) A high-throughput percentage-of-binding strategy to measure binding energies in DNA-protein interactions: application to genome-scale site discovery. Nucleic Acids Res 36(15):4863–4871.  https://doi.org/10.1093/nar/gkn477 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wang Y, Xu N, Ye C, Liu L, Shi Z, Wu J (2015) Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production. Front Microbiol 6:632.  https://doi.org/10.3389/fmicb.2015.00632 PubMedPubMedCentralGoogle Scholar
  97. Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD (2014) A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database. BMC Syst Biol 8(1):79.  https://doi.org/10.1186/1752-0509-8-79 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22(2):207–218.  https://doi.org/10.1016/j.cmet.2015.06.006 PubMedCrossRefGoogle Scholar
  99. Winter G, Kromer JO (2013) Fluxomics—connecting ‘omics analysis and phenotypes. Environ Microbiol 15(7):1901–1916.  https://doi.org/10.1111/1462-2920.12064 PubMedCrossRefGoogle Scholar
  100. Wodke JA, Puchalka J, Lluch-Senar M, Marcos J, Yus E, Godinho M, Gutierrez-Gallego R, dos Santos VA, Serrano L, Klipp E, Maier T (2013) Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 9(1):653.  https://doi.org/10.1038/msb.2013.6 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wongsurawat T, Jenjaroenpun P, Kwoh CK, Kuznetsov V (2012) Quantitative model of R-loop forming structures reveals a novel level of RNA-DNA interactome complexity. Nucleic Acids Res 40(2):e16.  https://doi.org/10.1093/nar/gkr1075 PubMedCrossRefGoogle Scholar
  102. Xu C, Liu L, Zhang Z, Jin D, Qiu J, Chen M (2012) Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-012-4543-9
  103. Xu N, Liu L, Zou W, Liu J, Hua Q, Chen J (2013) Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. Mol BioSyst 9(2):205–216.  https://doi.org/10.1039/c2mb25311a PubMedCrossRefGoogle Scholar
  104. Xu N, Liu J, Ai L, Liu L (2015) Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W. Gene 554(2):140–147.  https://doi.org/10.1016/j.gene.2014.10.034 PubMedCrossRefGoogle Scholar
  105. Xu N, Ye C, Chen X, Liu J, Liu L (2017) Genome-scale metabolic modelling common cofactors metabolism in microorganisms. J Biotechnol 251:1–13.  https://doi.org/10.1016/j.jbiotec.2017.04.004 PubMedCrossRefGoogle Scholar
  106. Ye C, Zou W, Xu N, Liu L (2014) Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. J Biotechnol 182-183:61–67.  https://doi.org/10.1016/j.jbiotec.2014.04.027 PubMedCrossRefGoogle Scholar
  107. Ye C, Qiao W, Yu X, Ji X, Huang H, Collier JL, Liu L (2015a) Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics 16(1).  https://doi.org/10.1186/s12864-015-2042-y
  108. Ye C, Xu N, Chen H, Chen YQ, Chen W, Liu L (2015b) Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Syst Biol 9(1):1.  https://doi.org/10.1186/s12918-014-0137-8 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ye C, Xu N, Dong C, Ye Y, Zou X, Chen X, Guo F, Liu L (2017) IMGMD: a platform for the integration and standardisation of in silico microbial genome-scale metabolic models. Sci Rep 7(1):727.  https://doi.org/10.1038/s41598-017-00820-6 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ye C, Xu N, Chen X, Liu L (2018) Metabolic model reconstruction and analysis of an artificial microbial ecosystem. Methods Mol Biol 1716:219–238.  https://doi.org/10.1007/978-1-4939-7528-0_10 PubMedCrossRefGoogle Scholar
  111. Zhang C, Hua Q (2016) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413.  https://doi.org/10.3389/fphys.2015.00413 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhang R, Lin Y (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37:D455–D458.  https://doi.org/10.1093/Nar/Gkn858 PubMedCrossRefGoogle Scholar
  113. Zhu LJ (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset. Methods Mol Biol 1067:105–124.  https://doi.org/10.1007/978-1-62703-607-8_8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
  3. 3.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  4. 4.The Laboratory of Food Microbial-Manufacturing EngineeringJiangnan UniversityWuxiChina

Personalised recommendations