Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2337–2350 | Cite as

Identification of cyclosporin C from Amphichorda felina using a Cryptococcus neoformans differential temperature sensitivity assay

  • Lijian Xu
  • Yan Li
  • John B. Biggins
  • Brian R. Bowman
  • Gregory L. Verdine
  • James B. Gloer
  • J. Andrew Alspaugh
  • Gerald F. Bills
Applied microbial and cell physiology

Abstract

We used a temperature differential assay with the opportunistic fungal pathogen Cryptococcus neoformans as a simple screening platform to detect small molecules with antifungal activity in natural product extracts. By screening of a collection extracts from two different strains of the coprophilous fungus, Amphichorda felina, we detected strong, temperature-dependent antifungal activity using a two-plate agar zone of inhibition assay at 25 and 37 °C. Bioassay-guided fractionation of the crude extract followed by liquid chromatography–mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) identified cyclosporin C (CsC) as the main component of the crude extract responsible for growth inhibition of C. neoformans at 37 °C. The presence of CsC was confirmed by comparison with a commercial standard. We sequenced the genome of A. felina to identify and annotate the CsC biosynthetic gene cluster. The only previously characterized gene cluster for the biosynthesis of similar compounds is that of the related immunosuppressant drug cyclosporine A (CsA). The CsA and CsC gene clusters share a high degree of synteny and sequence similarity. Amino acid changes in the adenylation domain of the CsC nonribosomal peptide synthase’s sixth module may be responsible for the substitution of l-threonine compared to l-α-aminobutyric acid in the CsA peptide core. This screening strategy promises to yield additional antifungal natural products with a focused spectrum of antimicrobial activity.

Keywords

Adenylation domain Antifungal Ascomycota Coprophilous fungi Genome Hypocreales Nonribosomal peptide synthetase Secondary metabolites Thermal adaption 

Notes

Compliance with ethical standards

Conflict of interest

J.B.B., B.R.B., and G.L.V. have financial interests in Lifemine Therapeutics. None of the other authors declare any potential conflicts of interest.

Ethical approval

No work appearing in this article involved studies with human participants or animals.

Supplementary material

253_2018_8792_MOESM1_ESM.pdf (435 kb)
ESM 1 (PDF 434 kb)

References

  1. Anonymous (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3. 3rd ed. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  2. Anonymous (2017) Westerdijk Institute Culture Collection. Utrecht, The NetherlandsGoogle Scholar
  3. Ben-Aroya S, Pan X, Boeke JD, Hieter P (2010) Making temperature-sensitive mutants. Meth Enzymol 470:181–204.  https://doi.org/10.1016/S0076-6879(10)70008-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bills GF, Gloer JB, An Z (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16(5):549–565.  https://doi.org/10.1016/j.mib.2013.08.001 CrossRefPubMedGoogle Scholar
  5. Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, Duran HGS, Santos E, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) AntiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucl Acids Res 45(W1):W36–W41.  https://doi.org/10.1093/nar/gkx319 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, McPhail KL, Spatafora JW (2013) The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Gen 9(6):e1003496.  https://doi.org/10.1371/journal.pgen.1003496 CrossRefGoogle Scholar
  7. Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10(1):26.  https://doi.org/10.1186/1471-2148-10-26 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen L, Yue Q, Zhang X, Xiang M, Wang C, Li S, Che Y, Ortiz-Lopez FJ, Bills GF, Liu X, An Z (2013a) Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genomics 14(1):339.  https://doi.org/10.1186/1471-2164-14-339 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Y-L, Lehman VN, Lewit Y, Averette AF, Heitman J (2013b) Calcineurin governs thermotolerance and virulence of Cryptococcus gattii. G3 3(3):527–539.  https://doi.org/10.1534/g3.112.004242 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chikhi R, Medvedev P (2014) Informed and automated k-mer size selection for genome assembly. Bioinformatics 30(1):31–37.  https://doi.org/10.1093/bioinformatics/btt310 CrossRefPubMedGoogle Scholar
  11. Coelho C, Casadevall A (2016) Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol 18(6):792–799.  https://doi.org/10.1111/cmi.12590 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cordeiro RA, Evangelista AJJ, Serpa R, Marques FJF, Melo CVS, Oliveira JS, Franco JS, Alencar LP, Bandeira TJPG, Brilhante RSN, Sidrim JJC, Rocha MFG (2016) Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Microbiol 162(2):309–317.  https://doi.org/10.1099/mic.0.000222 CrossRefGoogle Scholar
  13. Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Nat Acad Sci USA 106(8):2818–2823.  https://doi.org/10.1073/pnas.0813394106 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J (1999) Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19(6):4101–4112.  https://doi.org/10.1128/MCB.19.6.4101 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VFJ, Movva NR, Perfect JR, Cardenas ME, Heitman J (2000) Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemotherap 44(1):143–149.  https://doi.org/10.1128/AAC.44.1.143-149.2000 CrossRefGoogle Scholar
  16. de Candolle AP (1815) Flore Française 6:1–662Google Scholar
  17. de Hoog GS (1972) The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Stud Mycol 1:1–41Google Scholar
  18. Deffieux G, Merlet D, Baute R, Bourgeois G, Baute MA, Neveu A (1981) New insecticidal cyclopeptides from the fungus Isaria felina 2. Structure elucidation of isariin B, isariin C and isariin D. J Antibiot 34(10):1266–1270.  https://doi.org/10.7164/antibiotics.34.1266 CrossRefPubMedGoogle Scholar
  19. Dreyfuss M, Härri E, Hofmann H, Kobel H, Pache W, Tscherter H (1976) Cyclosporin A and C, new metabolites from Trichoderma polysporum (Link ex Pers.) Rifai. Eur J Appl Microbiol Biotech 3(2):125–133.  https://doi.org/10.1007/BF00928431 CrossRefGoogle Scholar
  20. Dreyfuss MM (1986) Neue Erkenntnisse aus einem pharmakologischen Pilz-screening. Sydowia 39:22–36Google Scholar
  21. Du F-Y, Li X-M, Zhang P, Li C-S, Wang B-G (2014) Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomopathogenic fungus. Marine Drugs 12(5):2816–2826.  https://doi.org/10.3390/md12052816 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Earl D, Bradnam K, St. John J, Darling A, Lin D, Fass J, Yu HOK, Buffalo V, Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung W-K, Ning Z, Haimel M, Simpson JT, Fonseca NA, Birol İ, Docking TR, Ho IY, Rokhsar DS, Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR, Phillippy AM, Koren S, Yang S-P, Wu W, Chou W-C, Srivastava A, Shaw TI, Ruby JG, Skewes-Cox P, Betegon M, Dimon MT, Solovyev V, Seledtsov I, Kosarev P, Vorobyev D, Ramirez-Gonzalez R, Leggett R, MacLean D, Xia F, Luo R, Li Z, Xie Y, Liu B, Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Yin S, Sharpe T, Hall G, Kersey PJ, Durbin R, Jackman SD, Chapman JA, Huang X, DeRisi JL, Caccamo M, Li Y, Jaffe DB, Green RE, Haussler D, Korf I, Paten B (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 21(12):2224–2241.  https://doi.org/10.1101/gr.126599.111 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Esher SK, Ost KS, Kozubowski L, Yang D-H, Kim MS, Bahn Y-S, Alspaugh JA, Nichols CB (2016) Relative contributions of prenylation and postprenylation processing in Cryptococcus neoformans pathogenesis. mSphere 1(2):e00084–e00015.  https://doi.org/10.1128/mSphere.00084-15 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Garcia-Solache MA, Casadevall A (2010) Global warming will bring new fungal diseases for mammals. MBio 1:e00061–e00010CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guo YX, Liu QH, Ng TB, Wang HX (2005) Isarfelin, a peptide with antifungal and insecticidal activities from Isaria felina. Peptides 26(12):2384–2391.  https://doi.org/10.1016/j.peptides.2005.05.020 CrossRefPubMedGoogle Scholar
  26. Haese A, Schubert M, Herrmann M, Zocher R (1993) Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol 7(6):905–914.  https://doi.org/10.1111/j.1365-2958.1993.tb01181.x CrossRefPubMedGoogle Scholar
  27. Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269(17):12710–12714PubMedGoogle Scholar
  28. Juvvadi PR, Lamoth F, Steinbach WJ (2014) Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 28(2-3):56–69.  https://doi.org/10.1016/j.fbr.2014.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kalb D, Lackner G, Hoffmeister D (2013) Fungal peptide synthetases: an update on functions and specificity signatures. Fungal Biol Rev 27(2):43–50.  https://doi.org/10.1016/j.fbr.2013.05.002 CrossRefGoogle Scholar
  30. Khayatt BI, Overmars L, Siezen RJ, Francke C (2013) Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS One 8(4):e62136.  https://doi.org/10.1371/journal.pone.0062136 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Knudsen M, Søndergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CNS (2016) Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Bioinformatics 32(3):325–329.  https://doi.org/10.1093/bioinformatics/btv600 CrossRefPubMedGoogle Scholar
  32. Langenfeld A, Blond A, Gueye S, Herson P, Nay B, Dupont J, Prado S (2011) Insecticidal cyclodepsipeptides from Beauveria felina. J Nat Prod 74(4):825–830.  https://doi.org/10.1021/np100890n CrossRefPubMedGoogle Scholar
  33. Leach MD, Cowen LE (2013) Surviving the heat of the moment: a fungal pathogens perspective. PLoS Path 9(3):e1003163.  https://doi.org/10.1371/journal.ppat.1003163 CrossRefGoogle Scholar
  34. Li Y, Yue Q, Jayanetti DR, Swenson DC, Bartholomeusz GA, An Z, Gloer JB, Bills GF (2017) Anti-Cryptococcus phenalenones and cyclic tetrapeptides from Auxarthron pseudauxarthron. J Nat Prod 80(7):2101–2109.  https://doi.org/10.1021/acs.jnatprod.7b00341 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li Y, Yue Q, Krausert NM, An Z, Gloer JB, Bills GF (2016) Emestrins: anti-Cryptococcus epipolythiodioxopiperazines from Podospora australis. J Nat Prod 79(9):2357–2363.  https://doi.org/10.1021/acs.jnatprod.6b00498 CrossRefPubMedGoogle Scholar
  36. Mody CH, Toews GB, Lipscomb MF (1988) Cyclosporin A inhibits the growth of Cryptococcus neoformans in a murine model. Infect Immun 56(1):7–12PubMedPubMedCentralGoogle Scholar
  37. Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P (1997) Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. App Environ Microbiol 63:1739–1743Google Scholar
  38. Offenzeller M, Santer G, Totschnig K, Su Z, Moser H, Traber R, Schneider-Scherzer E (1996) Biosynthesis of the unusual amino acid (4R)-4-[(E)-2-Butenyl]-4-methyl-L-threonine of cyclosporin A: enzymatic analysis of the reaction sequence including identification of the methylation precursor in a polyketide pathway. Biochemistry 35(25):8401–8412.  https://doi.org/10.1021/bi960224n CrossRefPubMedGoogle Scholar
  39. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23(4):525–530.  https://doi.org/10.1097/QAD.0b013e328322ffac CrossRefPubMedGoogle Scholar
  40. Perfect JR (2006) Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 6(4):463–468.  https://doi.org/10.1111/j.1567-1364.2006.00051.x CrossRefPubMedGoogle Scholar
  41. Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16(9):603–616.  https://doi.org/10.1038/nrd.2017.46 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, Davies JE, Bills GF (2011) Confronting the challenges of natural product-based antifungal discovery. Chem Biol 18(2):148–164.  https://doi.org/10.1016/j.chembiol.2011.01.009 CrossRefPubMedGoogle Scholar
  43. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2 - a web server for predicting NRPS adenylation domain specificity. Nucl Acids Res 39(suppl_2):W362–W367.  https://doi.org/10.1093/nar/gkr323 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrect, The NetherlandsGoogle Scholar
  45. Slightom JL, Metzger BP, Luu HT, Elhammer AP (2009) Cloning and molecular characterization of the gene encoding the aureobasidin a biosynthesis complex in Aureobasidium pullulans BP-1938. Gene 431(1-2):67–79.  https://doi.org/10.1016/j.gene.2008.11.011 CrossRefPubMedGoogle Scholar
  46. Smetanina OF, Yurchenko AN, Ivanets EV, Kalinovsky AI, Khudyakova YV, Dyshlovoy SA, von Amsberg G, Yurchenko EA, Afiyatullov SS (2017) Unique prostate cancer-toxic polyketides from marine sediment-derived fungus Isaria felina. J Antibiot 70(7):856–858.  https://doi.org/10.1038/ja.2017.53 CrossRefPubMedGoogle Scholar
  47. Smith KD, Achan B, Huppler Hullsiek K, McDonald T, Okagaki LH, Akampurira A, Rhein JR, Meya DB, Boulware DR, Nielsen K (2015) Increased antifungal drug resistance in Ugandan clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemotherap 59(12):7197–7204.  https://doi.org/10.1128/AAC.01299-15 CrossRefGoogle Scholar
  48. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10.  https://doi.org/10.1186/gb-2006-7-s1-s10 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505.  https://doi.org/10.1016/S1074-5521(99)80082-9 CrossRefPubMedGoogle Scholar
  50. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucl Acids Res 33(Web Server):W465–W467.  https://doi.org/10.1093/nar/gki458 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5(6):418–430.  https://doi.org/10.1038/nrmicro1680 CrossRefPubMedGoogle Scholar
  52. Traber R, Dreyfuss MM (1996) Occurrence of cyclosporins and cyclosporin-like peptolides in fungi. J Indust Microbiol 17:397–401Google Scholar
  53. Traber R, Hofmann H, Loosli H-R, Ponelle M, von Wartburg A (1987) Neue cyclosporine aus Tolypocladium inflatum. Die cyclosporine K–Z. Helvet Chim Acta 70(1):13–36.  https://doi.org/10.1002/hlca.19870700103 CrossRefGoogle Scholar
  54. Traber R, Kuhn M, Rüegger A, Lichti H, Loosli H-R, von Wartburg A (1977) Die Struktur von Cyclosporin C. Helvet Chim Acta 60(4):1247–1255.  https://doi.org/10.1002/hlca.19770600414 CrossRefPubMedGoogle Scholar
  55. Wang B, Kang Q, Lu Y, Bai L, Wang C (2012) Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Nat Acad Sci USA 109(4):1287–1292.  https://doi.org/10.1073/pnas.1115983109 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang P, Cardenas ME, Cox GM, Perfect JR, Heitman J (2001) Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep 2(6):511–518.  https://doi.org/10.1093/embo-reports/kve109 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Xu Y, Orozco R, Kithsiri Wijeratne EM, Espinosa-Artiles P, Leslie Gunatilaka AA, Patricia Stock S, Molnár I (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Gen Biol 46(5):353–364.  https://doi.org/10.1016/j.fgb.2009.03.001 CrossRefGoogle Scholar
  58. Xu Y, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnár I (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15(9):898–907.  https://doi.org/10.1016/j.chembiol.2008.07.011 CrossRefPubMedGoogle Scholar
  59. Yurchenko AN, Smetanina OF, Kalinovsky AI, Pushilin MA, Glazunov VP, Khudyakova YV, Kirichuk NN, Ermakova SP, Dyshlovoy SA, Yurchenko EA, Afiyatullov SS (2014) Oxirapentyns F-K from the marine-sediment-derived fungus Isaria felina KMM 4639. J Nat Prod 77(6):1321–1328.  https://doi.org/10.1021/np500014m CrossRefPubMedGoogle Scholar
  60. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang S, Qiu Y, Kakule TB, Lu Z, Xu F, Lamb JG, Reilly CA, Zheng Y, Sham SWS, Wang W, Xuan L, Schmidt EW, Zhan J (2017a) Identification of cyclic depsipeptides and their dedicated synthetase from Hapsidospora irregularis. J Nat Prod 80(2):363–370.  https://doi.org/10.1021/acs.jnatprod.6b00808 CrossRefPubMedGoogle Scholar
  62. Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017b) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39:1–31.  https://doi.org/10.3767/persoonia.2017.39.01 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Texas Therapeutics Institute, The Brown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.College of Agricultural Resources and EnvironmentHeilongjiang UniversityHarbinChina
  3. 3.Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
  4. 4.LifeMine TherapeuticsNew YorkUSA
  5. 5.Department of ChemistryUniversity of IowaIowa CityUSA
  6. 6.Departments of Biochemistry and MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations