Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy

Abstract

The enzymatic deconstruction of structural polysaccharides, which relies on the production of specific glycoside hydrolases (GHs), is an essential process across environments. Over the past few decades, researchers studying the diversity and evolution of these enzymes have isolated and biochemically characterized thousands of these proteins. The carbohydrate-active enzymes database (CAZy) lists these proteins and provides some metadata. Here, the sequences and metadata of characterized sequences derived from GH families associated with the deconstruction of cellulose, xylan, and chitin were collected and discussed. First, although few polyspecific enzymes are identified, characterized GH families are mostly monospecific. Next, the taxonomic distribution of characterized GH mirrors the distribution of identified sequences in sequenced genomes. This provides a rationale for connecting the identification of GH sequences to specific reactions or lineages. Finally, we tested the annotation of the characterized GHs using HMM scan and the protein families database (Pfam). The vast majority of GHs targeting cellulose, xylan, and chitin can be identified using this publicly accessible approach.

This is a preview of subscription content, log in to check access.

References

  1. Artzi L, Bayer EA, Moraïs S (2016) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15(2):83–95. https://doi.org/10.1038/nrmicro.2016.164

    Article  PubMed  Google Scholar 

  2. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12(1):186. https://doi.org/10.1186/1471-2148-12-186

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bai W, Xue Y, Zhou C, Ma Y (2012) Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol Lett 34(11):2093–2099. https://doi.org/10.1007/s10529-012-1011-7

    CAS  Article  PubMed  Google Scholar 

  4. Bailey VL, Fansler SJ, Stegen JC, McCue LA (2013) Linking microbial community structure to β-glucosidic function in soil aggregates. ISME J 7(10):2044–2053. https://doi.org/10.1038/ismej.2013.87

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Berger E, Jones WA, Jones DT, Woods DR (1989) Cloning and sequencing of an endoglucanase (end1) gene from Butyrivibrio fibrisolvens H17c. Mol Gen Genet 219(1-2):193–198

    CAS  Article  PubMed  Google Scholar 

  6. Berlemont R (2017) Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci Rep 7(1):222. https://doi.org/10.1038/s41598-017-00258-w

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79(5):1545–1554. https://doi.org/10.1128/AEM.03305-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Berlemont R, Martiny AC (2015) Genomic potential for polysaccharides deconstruction in bacteria. Appl Environ Microbiol 81(4):1513–1519. https://doi.org/10.1128/AEM.03718-14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berlemont R, Martiny AC (2016) Glycoside hydrolases across environmental microbial communities. PLoS Comput Biol 12(12):e1005300. https://doi.org/10.1371/journal.pcbi.1005300

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berlemont R, Allison SD, Weihe C, Lu Y, Brodie EL, Martiny JBH, Martiny AC (2014) Cellulolytic potential under environmental changes in microbial communities from grassland litter. Front Microbiol 5:639. https://doi.org/10.3389/fmicb.2014.00639

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bokma E, Barends T, Terwissch van Scheltingab AC, Dijkstr BW, Beintema JJ (2000) Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis. FEBS Lett 478(1-2):119–122. https://doi.org/10.1016/S0014-5793(00)01833-0

    CAS  Article  PubMed  Google Scholar 

  12. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516. https://doi.org/10.1126/science.1244273

    CAS  Article  PubMed  Google Scholar 

  13. Bussink AP, Speijer D, Aerts JMFG, Boot RG (2007) Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 177(2):959–970. https://doi.org/10.1534/genetics.107.075846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239(2):317–324. https://doi.org/10.1016/S0378-1119(99)00396-0

    CAS  Article  PubMed  Google Scholar 

  15. Din N, Gilkes NR, Tekant B, Miller RC, Warren RAJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology 9(11):1096–1099. https://doi.org/10.1038/nbt1191-1096

    CAS  Article  Google Scholar 

  16. Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1(1):2–17. https://doi.org/10.1111/j.1757-1707.2009.01004.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Dodd D, Kocherginskaya SA, Spies MA, Beery KE, Abbas CA, Mackie RI, Cann IKO (2009) Biochemical analysis of a β-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol 191(10):3328–3338. https://doi.org/10.1128/JB.01628-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230. https://doi.org/10.1093/nar/gkt1223

    CAS  Article  PubMed  Google Scholar 

  20. Fujita K, Shimomura K, Yamamoto K, Yamashita T, Suzuki K (2006) A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem Biophys Res Commun 345(1):502–507. https://doi.org/10.1016/j.bbrc.2006.04.126

    CAS  Article  PubMed  Google Scholar 

  21. Gefen G, Anbar M, Morag E, Lamed R, Bayer EA (2012) Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci U S A 109(26):10298–10303. https://doi.org/10.1073/pnas.1202747109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gibbs MD, Saul DJ, Lüthi E, Bergquist PL (1992) The beta-mannanase from Caldocellum saccharolyticum is part of a multidomain enzyme. Appl Environ Microbiol 58(12):3864–3867

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40(5):333–340. https://doi.org/10.1007/s002849910066

    CAS  Article  PubMed  Google Scholar 

  24. Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1(2-3):177–190. https://doi.org/10.1007/BF00058835

    CAS  Article  Google Scholar 

  25. Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375. https://doi.org/10.1038/ncomms1373

    Article  PubMed  Google Scholar 

  26. Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K, Iuga D, Simmons TJ, Durand-Tardif M, Brown SP, Dupree R, Busse-Wicher M, Dupree P (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants 3(11):859–865. https://doi.org/10.1038/s41477-017-0030-8

    Article  PubMed  Google Scholar 

  27. Guo R, Ding M, Zhang S-L, Xu G, Zhao F (2008) Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. J Comp Physiol B 178(2):209–215. https://doi.org/10.1007/s00360-007-0214-z

    CAS  Article  PubMed  Google Scholar 

  28. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087. https://doi.org/10.1038/nmicrobiol.2017.87

    CAS  Article  PubMed  Google Scholar 

  29. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644. https://doi.org/10.1016/S0959-440X(97)80072-3

    CAS  Article  PubMed  Google Scholar 

  30. Hernández A, Copa-Patiño JL, Soliveri J (2001) xln23 from Streptomyces chattanoogensis UAH23 encodes a putative enzyme with separate xylanase and arabinofuranosidase catalytic domains. DNA Seq 12(3):167–177. https://doi.org/10.3109/10425170109080771

    Article  PubMed  Google Scholar 

  31. Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP, Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298. https://doi.org/10.1073/pnas.1005732107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, L a P, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. https://doi.org/10.1126/science.1200387

    CAS  Article  PubMed  Google Scholar 

  33. Honda Y, Shimaya N, Ishisaki K, Ebihara M, Taniguchi H (2011) Elucidation of exo-β-d-glucosaminidase activity of a family 9 glycoside hydrolase (PBPRA0520) from Photobacterium profundum SS9. Glycobiology 21(4):503–511. https://doi.org/10.1093/glycob/cwq191

    CAS  Article  PubMed  Google Scholar 

  34. Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385(2):581–588. https://doi.org/10.1042/BJ20041388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Jhaveri P, Papastamatiou YP, German DP (2015) Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts. Comp Biochem Physiol A Mol Integr Physiol 189:76–83. https://doi.org/10.1016/j.cbpa.2015.07.013

    CAS  Article  PubMed  Google Scholar 

  36. Kawase T, Yokokwa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70(4):988–998. https://doi.org/10.1271/bbb.70.988

    CAS  Article  PubMed  Google Scholar 

  37. King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bowles DJ, Bruce NC, Graham IA, McQueen-Mason SJ (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proc Natl Acad Sci 107(12):5345–5350. https://doi.org/10.1073/pnas.0914228107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk GA, Gilbert JA (2012) Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol 30(6):513–520. https://doi.org/10.1038/nbt.2235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Konishi T, Nakata I, Miyagi Y, Tako M (2012) Extraction of β-1,3 xylan from green seaweed, Caulerpa lentillifera. J Appl Glycosci 59(4):161–163. https://doi.org/10.5458/jag.jag.JAG-2011_025

    CAS  Article  Google Scholar 

  40. Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y (2004) Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-6)-galactanase gene. Biochem J 377(3):749–755. https://doi.org/10.1042/BJ20031145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    CAS  Article  PubMed  Google Scholar 

  42. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):e00063–e00016. https://doi.org/10.1128/MMBR.00063-16

    Article  PubMed  Google Scholar 

  43. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495. https://doi.org/10.1093/nar/gkt1178

    CAS  Article  PubMed  Google Scholar 

  44. Mavromatis K, Sikorski J, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng J-F, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Chain P, Meincke L, Sims D, Chertkov O, Han C, Brettin T, Detter JC, Wahrenburg C, Rohde M, Pukall R, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk H-P, Kyrpides NC (2010) Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IAT). Stand Genomic Sci 2(1):9–18. https://doi.org/10.4056/sigs.591104

    Article  PubMed  PubMed Central  Google Scholar 

  45. Medie FM, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10(3):227–234. https://doi.org/10.1038/nrmicro2729

    CAS  Article  Google Scholar 

  46. Mitreva-Dautova M, Roze E, Overmars H, de Graaff L, Schots A, Helder J, Goverse A, Bakker J, Smant G (2006) A symbiont-independent endo-1,4-β-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant-Microbe Interact 19(5):521–529. https://doi.org/10.1094/MPMI-19-0521

    CAS  Article  PubMed  Google Scholar 

  47. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329. https://doi.org/10.1038/20601

    CAS  Article  PubMed  Google Scholar 

  48. Ogura J, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T (2006) Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70(10):2420–2428. https://doi.org/10.1271/bbb.60157

    CAS  Article  PubMed  Google Scholar 

  49. Palackal N, Lyon CS, Zaidi S, Luginbühl P, Dupree P, Goubet F, Macomber JL, Short JM, Hazlewood GP, Robertson DE, Steer BA (2007) A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74(1):113–124. https://doi.org/10.1007/s00253-006-0645-6

    CAS  Article  PubMed  Google Scholar 

  50. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20(12):1574–1584. https://doi.org/10.1093/glycob/cwq106

    CAS  Article  PubMed  Google Scholar 

  51. Pauchet Y, Heckel DG (2013) The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc R Soc B Biol Sci 280(1763):20131021–20131021. https://doi.org/10.1098/rspb.2013.1021

    Article  Google Scholar 

  52. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(D1):D290–D301. https://doi.org/10.1093/nar/gkr1065

    CAS  Article  PubMed  Google Scholar 

  53. Rahman MM, Inoue A, Ojima T (2014) Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai. Front Chem 2:60. https://doi.org/10.3389/fchem.2014.00060

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ravachol J, Borne R, Tardif C, de Philip P, Fierobe H-P (2014) Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 289(11):7335–7348. https://doi.org/10.1074/jbc.M113.545046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Rignall TR, Baker JO, McCarter SL, Adney WS, Vinzant TB, Decker SR, Himmel ME (2002) Effect of single active-site cleft mutation on product specificity in a thermostable bacterial cellulase. Appl Biochem Biotechnol 98–100(1-9):383–394. https://doi.org/10.1385/ABAB:98-100:1-9:383

    Article  PubMed  Google Scholar 

  56. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557. https://doi.org/10.1016/j.tim.2015.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  57. Saul DJ, Williams LC, Love DR, Chamley LW, Bergquist PL (1989) Nucleotide sequence of a gene from Caldocellum saccharolyticum encoding for exocellulase and endocellulase activity. Nucleic Acids Res 17(1):439. https://doi.org/10.1093/nar/17.1.439

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. St John FJ, González JM, Pozharski E (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584(21):4435–4441. https://doi.org/10.1016/j.febslet.2010.09.051

    CAS  Article  PubMed  Google Scholar 

  59. Stursová M, Zifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80(3):735–746. https://doi.org/10.1111/j.1574-6941.2012.01343.x

    Article  PubMed  Google Scholar 

  60. Suzuki M, Morimatsu M, Yamashita T, Iwanaga T, Syuto B (2001) A novel serum chitinase that is expressed in bovine liver. FEBS Lett 506(2):127–130. https://doi.org/10.1016/S0014-5793(01)02893-9

    CAS  Article  PubMed  Google Scholar 

  61. Talamantes D, Biabini N, Dang H, Abdoun K, Berlemont R (2016) Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol Biofuels 9(1):133. https://doi.org/10.1186/s13068-016-0538-6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262. https://doi.org/10.1128/MMBR.00001-15

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Hofte H, Gonneau M, Vernhettes S (2014) The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol 165(4):1521–1532. https://doi.org/10.1104/pp.114.241216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. 1293–1305. https://doi.org/10.1016/j.jmb.2007.11.007

  65. von Freiesleben P, Spodsberg N, Blicher TH, Anderson L, Jørgensen H, Stålbrand H, Meyer AS, Krogh KBRM (2016) An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans. Enzym Microb Technol 83:68–77. https://doi.org/10.1016/j.enzmictec.2015.10.011

    Article  Google Scholar 

  66. Wang S-Y, Moyne A-L, Thottappilly G, Wu S-J, Locy RD, Singh NK (2001) Purification and characterization of a Bacillus cereus exochitinase. Enzym Microb Technol 28(6):492–498. https://doi.org/10.1016/S0141-0229(00)00362-8

    CAS  Article  Google Scholar 

  67. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55(1):609–632. https://doi.org/10.1146/annurev-ento-112408-085319

    CAS  Article  PubMed  Google Scholar 

  68. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263. https://doi.org/10.1016/j.mib.2011.04.004

    CAS  Article  PubMed  Google Scholar 

  69. Wohlkönig A, Huet J, Looze Y, Wintjens R (2010) Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS One 5(11):e15388. https://doi.org/10.1371/journal.pone.0015388

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu SSH, Suen DF, Chang HC, Huang AHC (2002) Maize tapetum xylanase is synthesized as a precursor, processed and activated by a serine protease, and deposited on the pollen. J Biol Chem 277(50):49055–49064. https://doi.org/10.1074/jbc.M208804200

    CAS  Article  PubMed  Google Scholar 

  71. Xu Q, Ding S-Y, Brunecky R, Bomble YJ, Himmel ME, Baker JO (2013) Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnol Biofuels 6(1):126. https://doi.org/10.1186/1754-6834-6-126

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(W1):W445–W451. https://doi.org/10.1093/nar/gks479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79(15):4620–4634. https://doi.org/10.1128/aem.00821-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all investigators who contributed to the characterization of listed sequences. We thank M.B. Harris for comments on earlier versions of the manuscript.

Funding

This work was supported by the CSU Program for Research and Education in Biotechnology (CSUPERB) under award number GF00631142 by the National Institute of General Medical Sciences of the National Institutes of Health under Award number 8UL1GM118979-02. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renaud Berlemont.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(TXT 1775 kb)

ESM 2

(PDF 77 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.T.C., Freund, H.L., Kasanjian, J. et al. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol 102, 1629–1637 (2018). https://doi.org/10.1007/s00253-018-8778-y

Download citation

Keywords

  • Cellulase
  • Chitinase
  • Xylanase
  • CAZy
  • Glycoside hydrolase