Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 4, pp 1629–1637 | Cite as

Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy

  • Stanley T. C. Nguyen
  • Hannah L. Freund
  • Joshua Kasanjian
  • Renaud BerlemontEmail author
Mini-Review

Abstract

The enzymatic deconstruction of structural polysaccharides, which relies on the production of specific glycoside hydrolases (GHs), is an essential process across environments. Over the past few decades, researchers studying the diversity and evolution of these enzymes have isolated and biochemically characterized thousands of these proteins. The carbohydrate-active enzymes database (CAZy) lists these proteins and provides some metadata. Here, the sequences and metadata of characterized sequences derived from GH families associated with the deconstruction of cellulose, xylan, and chitin were collected and discussed. First, although few polyspecific enzymes are identified, characterized GH families are mostly monospecific. Next, the taxonomic distribution of characterized GH mirrors the distribution of identified sequences in sequenced genomes. This provides a rationale for connecting the identification of GH sequences to specific reactions or lineages. Finally, we tested the annotation of the characterized GHs using HMM scan and the protein families database (Pfam). The vast majority of GHs targeting cellulose, xylan, and chitin can be identified using this publicly accessible approach.

Keywords

Cellulase Chitinase Xylanase CAZy Glycoside hydrolase 

Notes

Acknowledgements

We thank all investigators who contributed to the characterization of listed sequences. We thank M.B. Harris for comments on earlier versions of the manuscript.

Funding

This work was supported by the CSU Program for Research and Education in Biotechnology (CSUPERB) under award number GF00631142 by the National Institute of General Medical Sciences of the National Institutes of Health under Award number 8UL1GM118979-02. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8778_MOESM1_ESM.txt (1.7 mb)
ESM 1 (TXT 1775 kb)
253_2018_8778_MOESM2_ESM.pdf (77 kb)
ESM 2 (PDF 77 kb)

References

  1. Artzi L, Bayer EA, Moraïs S (2016) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15(2):83–95.  https://doi.org/10.1038/nrmicro.2016.164 CrossRefPubMedGoogle Scholar
  2. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12(1):186.  https://doi.org/10.1186/1471-2148-12-186 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bai W, Xue Y, Zhou C, Ma Y (2012) Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol Lett 34(11):2093–2099.  https://doi.org/10.1007/s10529-012-1011-7 CrossRefPubMedGoogle Scholar
  4. Bailey VL, Fansler SJ, Stegen JC, McCue LA (2013) Linking microbial community structure to β-glucosidic function in soil aggregates. ISME J 7(10):2044–2053.  https://doi.org/10.1038/ismej.2013.87 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berger E, Jones WA, Jones DT, Woods DR (1989) Cloning and sequencing of an endoglucanase (end1) gene from Butyrivibrio fibrisolvens H17c. Mol Gen Genet 219(1-2):193–198CrossRefPubMedGoogle Scholar
  6. Berlemont R (2017) Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci Rep 7(1):222.  https://doi.org/10.1038/s41598-017-00258-w CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79(5):1545–1554.  https://doi.org/10.1128/AEM.03305-12 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berlemont R, Martiny AC (2015) Genomic potential for polysaccharides deconstruction in bacteria. Appl Environ Microbiol 81(4):1513–1519.  https://doi.org/10.1128/AEM.03718-14 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berlemont R, Martiny AC (2016) Glycoside hydrolases across environmental microbial communities. PLoS Comput Biol 12(12):e1005300.  https://doi.org/10.1371/journal.pcbi.1005300 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berlemont R, Allison SD, Weihe C, Lu Y, Brodie EL, Martiny JBH, Martiny AC (2014) Cellulolytic potential under environmental changes in microbial communities from grassland litter. Front Microbiol 5:639.  https://doi.org/10.3389/fmicb.2014.00639 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bokma E, Barends T, Terwissch van Scheltingab AC, Dijkstr BW, Beintema JJ (2000) Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis. FEBS Lett 478(1-2):119–122.  https://doi.org/10.1016/S0014-5793(00)01833-0 CrossRefPubMedGoogle Scholar
  12. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516.  https://doi.org/10.1126/science.1244273 CrossRefPubMedGoogle Scholar
  13. Bussink AP, Speijer D, Aerts JMFG, Boot RG (2007) Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 177(2):959–970.  https://doi.org/10.1534/genetics.107.075846 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239(2):317–324.  https://doi.org/10.1016/S0378-1119(99)00396-0 CrossRefPubMedGoogle Scholar
  15. Din N, Gilkes NR, Tekant B, Miller RC, Warren RAJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology 9(11):1096–1099.  https://doi.org/10.1038/nbt1191-1096 CrossRefGoogle Scholar
  16. Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1(1):2–17.  https://doi.org/10.1111/j.1757-1707.2009.01004.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dodd D, Kocherginskaya SA, Spies MA, Beery KE, Abbas CA, Mackie RI, Cann IKO (2009) Biochemical analysis of a β-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol 191(10):3328–3338.  https://doi.org/10.1128/JB.01628-08 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195.  https://doi.org/10.1371/journal.pcbi.1002195 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230.  https://doi.org/10.1093/nar/gkt1223 CrossRefPubMedGoogle Scholar
  20. Fujita K, Shimomura K, Yamamoto K, Yamashita T, Suzuki K (2006) A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem Biophys Res Commun 345(1):502–507.  https://doi.org/10.1016/j.bbrc.2006.04.126 CrossRefPubMedGoogle Scholar
  21. Gefen G, Anbar M, Morag E, Lamed R, Bayer EA (2012) Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci U S A 109(26):10298–10303.  https://doi.org/10.1073/pnas.1202747109 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gibbs MD, Saul DJ, Lüthi E, Bergquist PL (1992) The beta-mannanase from Caldocellum saccharolyticum is part of a multidomain enzyme. Appl Environ Microbiol 58(12):3864–3867PubMedPubMedCentralGoogle Scholar
  23. Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40(5):333–340.  https://doi.org/10.1007/s002849910066 CrossRefPubMedGoogle Scholar
  24. Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1(2-3):177–190.  https://doi.org/10.1007/BF00058835 CrossRefGoogle Scholar
  25. Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375.  https://doi.org/10.1038/ncomms1373 CrossRefPubMedGoogle Scholar
  26. Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K, Iuga D, Simmons TJ, Durand-Tardif M, Brown SP, Dupree R, Busse-Wicher M, Dupree P (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants 3(11):859–865.  https://doi.org/10.1038/s41477-017-0030-8 CrossRefPubMedGoogle Scholar
  27. Guo R, Ding M, Zhang S-L, Xu G, Zhao F (2008) Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. J Comp Physiol B 178(2):209–215.  https://doi.org/10.1007/s00360-007-0214-z CrossRefPubMedGoogle Scholar
  28. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087.  https://doi.org/10.1038/nmicrobiol.2017.87 CrossRefPubMedGoogle Scholar
  29. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644.  https://doi.org/10.1016/S0959-440X(97)80072-3 CrossRefPubMedGoogle Scholar
  30. Hernández A, Copa-Patiño JL, Soliveri J (2001) xln23 from Streptomyces chattanoogensis UAH23 encodes a putative enzyme with separate xylanase and arabinofuranosidase catalytic domains. DNA Seq 12(3):167–177.  https://doi.org/10.3109/10425170109080771 CrossRefPubMedGoogle Scholar
  31. Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP, Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298.  https://doi.org/10.1073/pnas.1005732107 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, L a P, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467.  https://doi.org/10.1126/science.1200387 CrossRefPubMedGoogle Scholar
  33. Honda Y, Shimaya N, Ishisaki K, Ebihara M, Taniguchi H (2011) Elucidation of exo-β-d-glucosaminidase activity of a family 9 glycoside hydrolase (PBPRA0520) from Photobacterium profundum SS9. Glycobiology 21(4):503–511.  https://doi.org/10.1093/glycob/cwq191 CrossRefPubMedGoogle Scholar
  34. Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385(2):581–588.  https://doi.org/10.1042/BJ20041388 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jhaveri P, Papastamatiou YP, German DP (2015) Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts. Comp Biochem Physiol A Mol Integr Physiol 189:76–83.  https://doi.org/10.1016/j.cbpa.2015.07.013 CrossRefPubMedGoogle Scholar
  36. Kawase T, Yokokwa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70(4):988–998.  https://doi.org/10.1271/bbb.70.988 CrossRefPubMedGoogle Scholar
  37. King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bowles DJ, Bruce NC, Graham IA, McQueen-Mason SJ (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proc Natl Acad Sci 107(12):5345–5350.  https://doi.org/10.1073/pnas.0914228107 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk GA, Gilbert JA (2012) Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol 30(6):513–520.  https://doi.org/10.1038/nbt.2235 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Konishi T, Nakata I, Miyagi Y, Tako M (2012) Extraction of β-1,3 xylan from green seaweed, Caulerpa lentillifera. J Appl Glycosci 59(4):161–163.  https://doi.org/10.5458/jag.jag.JAG-2011_025 CrossRefGoogle Scholar
  40. Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y (2004) Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-6)-galactanase gene. Biochem J 377(3):749–755.  https://doi.org/10.1042/BJ20031145 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456CrossRefPubMedGoogle Scholar
  42. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):e00063–e00016.  https://doi.org/10.1128/MMBR.00063-16 CrossRefPubMedGoogle Scholar
  43. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495.  https://doi.org/10.1093/nar/gkt1178 CrossRefPubMedGoogle Scholar
  44. Mavromatis K, Sikorski J, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng J-F, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Chain P, Meincke L, Sims D, Chertkov O, Han C, Brettin T, Detter JC, Wahrenburg C, Rohde M, Pukall R, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk H-P, Kyrpides NC (2010) Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IAT). Stand Genomic Sci 2(1):9–18.  https://doi.org/10.4056/sigs.591104 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Medie FM, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10(3):227–234.  https://doi.org/10.1038/nrmicro2729 CrossRefGoogle Scholar
  46. Mitreva-Dautova M, Roze E, Overmars H, de Graaff L, Schots A, Helder J, Goverse A, Bakker J, Smant G (2006) A symbiont-independent endo-1,4-β-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant-Microbe Interact 19(5):521–529.  https://doi.org/10.1094/MPMI-19-0521 CrossRefPubMedGoogle Scholar
  47. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329.  https://doi.org/10.1038/20601 CrossRefPubMedGoogle Scholar
  48. Ogura J, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T (2006) Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70(10):2420–2428.  https://doi.org/10.1271/bbb.60157 CrossRefPubMedGoogle Scholar
  49. Palackal N, Lyon CS, Zaidi S, Luginbühl P, Dupree P, Goubet F, Macomber JL, Short JM, Hazlewood GP, Robertson DE, Steer BA (2007) A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74(1):113–124.  https://doi.org/10.1007/s00253-006-0645-6 CrossRefPubMedGoogle Scholar
  50. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20(12):1574–1584.  https://doi.org/10.1093/glycob/cwq106 CrossRefPubMedGoogle Scholar
  51. Pauchet Y, Heckel DG (2013) The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc R Soc B Biol Sci 280(1763):20131021–20131021.  https://doi.org/10.1098/rspb.2013.1021 CrossRefGoogle Scholar
  52. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(D1):D290–D301.  https://doi.org/10.1093/nar/gkr1065 CrossRefPubMedGoogle Scholar
  53. Rahman MM, Inoue A, Ojima T (2014) Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai. Front Chem 2:60.  https://doi.org/10.3389/fchem.2014.00060 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ravachol J, Borne R, Tardif C, de Philip P, Fierobe H-P (2014) Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 289(11):7335–7348.  https://doi.org/10.1074/jbc.M113.545046 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rignall TR, Baker JO, McCarter SL, Adney WS, Vinzant TB, Decker SR, Himmel ME (2002) Effect of single active-site cleft mutation on product specificity in a thermostable bacterial cellulase. Appl Biochem Biotechnol 98–100(1-9):383–394.  https://doi.org/10.1385/ABAB:98-100:1-9:383 CrossRefPubMedGoogle Scholar
  56. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557.  https://doi.org/10.1016/j.tim.2015.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Saul DJ, Williams LC, Love DR, Chamley LW, Bergquist PL (1989) Nucleotide sequence of a gene from Caldocellum saccharolyticum encoding for exocellulase and endocellulase activity. Nucleic Acids Res 17(1):439.  https://doi.org/10.1093/nar/17.1.439 CrossRefPubMedPubMedCentralGoogle Scholar
  58. St John FJ, González JM, Pozharski E (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584(21):4435–4441.  https://doi.org/10.1016/j.febslet.2010.09.051 CrossRefPubMedGoogle Scholar
  59. Stursová M, Zifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80(3):735–746.  https://doi.org/10.1111/j.1574-6941.2012.01343.x CrossRefPubMedGoogle Scholar
  60. Suzuki M, Morimatsu M, Yamashita T, Iwanaga T, Syuto B (2001) A novel serum chitinase that is expressed in bovine liver. FEBS Lett 506(2):127–130.  https://doi.org/10.1016/S0014-5793(01)02893-9 CrossRefPubMedGoogle Scholar
  61. Talamantes D, Biabini N, Dang H, Abdoun K, Berlemont R (2016) Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol Biofuels 9(1):133.  https://doi.org/10.1186/s13068-016-0538-6 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262.  https://doi.org/10.1128/MMBR.00001-15 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Hofte H, Gonneau M, Vernhettes S (2014) The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol 165(4):1521–1532.  https://doi.org/10.1104/pp.114.241216 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. 1293–1305.  https://doi.org/10.1016/j.jmb.2007.11.007
  65. von Freiesleben P, Spodsberg N, Blicher TH, Anderson L, Jørgensen H, Stålbrand H, Meyer AS, Krogh KBRM (2016) An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans. Enzym Microb Technol 83:68–77.  https://doi.org/10.1016/j.enzmictec.2015.10.011 CrossRefGoogle Scholar
  66. Wang S-Y, Moyne A-L, Thottappilly G, Wu S-J, Locy RD, Singh NK (2001) Purification and characterization of a Bacillus cereus exochitinase. Enzym Microb Technol 28(6):492–498.  https://doi.org/10.1016/S0141-0229(00)00362-8 CrossRefGoogle Scholar
  67. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55(1):609–632.  https://doi.org/10.1146/annurev-ento-112408-085319 CrossRefPubMedGoogle Scholar
  68. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263.  https://doi.org/10.1016/j.mib.2011.04.004 CrossRefPubMedGoogle Scholar
  69. Wohlkönig A, Huet J, Looze Y, Wintjens R (2010) Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS One 5(11):e15388.  https://doi.org/10.1371/journal.pone.0015388 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wu SSH, Suen DF, Chang HC, Huang AHC (2002) Maize tapetum xylanase is synthesized as a precursor, processed and activated by a serine protease, and deposited on the pollen. J Biol Chem 277(50):49055–49064.  https://doi.org/10.1074/jbc.M208804200 CrossRefPubMedGoogle Scholar
  71. Xu Q, Ding S-Y, Brunecky R, Bomble YJ, Himmel ME, Baker JO (2013) Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnol Biofuels 6(1):126.  https://doi.org/10.1186/1754-6834-6-126 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(W1):W445–W451.  https://doi.org/10.1093/nar/gks479 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79(15):4620–4634.  https://doi.org/10.1128/aem.00821-13 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesCalifornia State University—Long BeachLong BeachUSA

Personalised recommendations