Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2075–2089 | Cite as

Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials

  • Arnau Bassegoda
  • Kristina Ivanova
  • Eva Ramon
  • Tzanko Tzanov
Mini-Review

Abstract

Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill “superbugs” poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.

Keywords

Antibiotic resistance Antibiofouling Antimicrobial peptides Quorum sensing Virulence factors Nano-antimicrobial materials 

Notes

Funding information

This work was supported by the European project PROTECT—“Pre-commercial lines for production of surface nanostructured antimicrobial and anti-biofilm textiles, medical devices and water treatment membranes” (H2020 – 720851) and Spanish national project HybridNanoCoat – “Hybrid nanocoatings on indwelling medical devices with enhanced antibacterial and antibiofilm efficiency” (MAT2015-67648-R).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188.  https://doi.org/10.1007/s13204-012-0080-1. CrossRefGoogle Scholar
  2. Alves D, Magalhães A, Grzywacz D, Neubauer D, Kamysz W, Pereira MO (2016) Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces. Acta Biomater 44:313–322.  https://doi.org/10.1016/j.actbio.2016.08.010. PubMedCrossRefGoogle Scholar
  3. Amitai G, Andersen J, Wargo S, Asche G, Chir J, Koepsel R, Russell AJ (2009) Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–6529.  https://doi.org/10.1016/j.biomaterials.2009.08.027. PubMedCrossRefGoogle Scholar
  4. Annous BA, Fratamico PM, Smith JL (2009) Scientific status summary: Quorum sensing in biofilms: Why bacteria behave the way they do. J Food Sci 74(1):R24–R37.  https://doi.org/10.1111/j.1750-3841.2008.01022.x PubMedCrossRefGoogle Scholar
  5. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6(40):959–978.  https://doi.org/10.1098/rsif.2009.0203 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Avivi S, Nitzan Y, Dror R, Gedanken A (2003) An easy sonochemical route for the encapsulation of tetracycline in bovine serum albumin microspheres. J Am Chem Soc 125(51):15712–15713.  https://doi.org/10.1021/ja036834+ PubMedCrossRefGoogle Scholar
  7. Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J, Engel E, Mateos-Timoneda MA, Torrents E (2015) Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 209:150–158.  https://doi.org/10.1016/j.jconrel.2015.04.028. PubMedCrossRefGoogle Scholar
  8. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575.  https://doi.org/10.3390/ph6121543 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Shokrgozar MA, Yari A, Saeedi-Eslami SN (2013) Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater Sci Eng C 33(1):153–164.  https://doi.org/10.1016/j.msec.2012.08.023. CrossRefGoogle Scholar
  10. Baron (ed) (1996) Medical microbiology, 4th edn. University of Texas Medical Branch, GalvestonGoogle Scholar
  11. Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E, Cloeckaert A (2004) AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob Agents Chemother 48(10):3729–3735.  https://doi.org/10.1128/aac.48.10.3729-3735.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beladiya C, Tripathy RK, Bajaj P, Aggarwal G, Pande AH (2015) Expression, purification and immobilization of recombinant AiiA enzyme onto magnetic nanoparticles. Protein Expr Purif 113:56–62.  https://doi.org/10.1016/j.pep.2015.04.014. PubMedCrossRefGoogle Scholar
  13. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58.  https://doi.org/10.1111/apm.12099 CrossRefGoogle Scholar
  14. Boudou T, Crouzier T, Ren K, Blin G, Picart C (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–467.  https://doi.org/10.1002/adma.200901327. PubMedCrossRefGoogle Scholar
  15. Boulmedais F, Frisch B, Etienne O, Lavalle P, Picart C, Ogier J, Voegel JC, Schaaf P, Egles C (2004) Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials 25(11):2003–2011.  https://doi.org/10.1016/j.biomaterials.2003.08.039. PubMedCrossRefGoogle Scholar
  16. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55(6):2655–2661.  https://doi.org/10.1128/aac.00045-11 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brackman G, Breyne K, De Rycke R, Vermote A, Van Nieuwerburgh F, Meyer E, Van Calenbergh S, Coenye T (2016) The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci Rep 6(1):20321.  https://doi.org/10.1038/srep20321 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bratskaya S, Marinin D, Simon F, Synytska A, Zschoche S, Busscher HJ, Jager D, van der Mei HC (2007) Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/κ-carrageenan multilayers. Biomacromolecules 8(9):2960–2968.  https://doi.org/10.1021/bm700620j PubMedCrossRefGoogle Scholar
  19. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250.  https://doi.org/10.1038/nrmicro1098 PubMedCrossRefGoogle Scholar
  20. Cado G, Aslam R, Séon L, Garnier T, Fabre R, Parat A, Chassepot A, Voegel JC, Senger B, Schneider F, Frère Y, Jierry L, Schaaf P, Kerdjoudj H, Metz-Boutigue MH, Boulmedais F (2013) Self-defensive biomaterial coating against bacteria and yeasts: polysaccharide multilayer film with embedded antimicrobial peptide. Adv Funct Mater 23:4801–4809.  https://doi.org/10.1002/adfm.201300416 Google Scholar
  21. Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Bürgmann H, Sørum H (2013) A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 4:96.  https://doi.org/10.3389/fmicb.2013.00096 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carmona-Ribeiro AM, de Melo Carrasco LD (2013) Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14(5):9906–9946.  https://doi.org/10.3390/ijms14059906 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carr JF, Gregory ST, Dahlberg AE (2005) Severity of the streptomycin resistance and streptomycin dependence phenotypes of ribosomal protein s12 of Thermus thermophilus depends on the identity of highly conserved amino acid residues. J Bacteriol 187(10):3548–3550.  https://doi.org/10.1128/jb.187.10.3548-3550.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23):5283–5293.  https://doi.org/10.1016/j.polymer.2010.08.022. CrossRefGoogle Scholar
  25. Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14(9):18488–18501.  https://doi.org/10.3390/ijms140918488 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen J, Zhu Y, Song Y, Wang L, Zhan J, He J, Zheng J, Zhong C, Shi X, Liu S, Ren L, Wang Y (2017) Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity. J Mater Chem 5(13):2407–2415.  https://doi.org/10.1039/c6tb03337g CrossRefGoogle Scholar
  27. Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30(28):5234–5240.  https://doi.org/10.1016/j.biomaterials.2009.05.058 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cheng Y, Wu J, Gao B, Zhao X, Yao J, Mei S, Zhang L, Ren H (2012) Fabrication and in vitro release behavior of a novel antibacterial coating containing halogenated furanone-loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium. Int J Nanomedicine 7:5641–5652.  https://doi.org/10.2147/ijn.s37022 PubMedPubMedCentralGoogle Scholar
  29. Cheng Y, Zhao X, Liu X, Sun W, Ren H, Gao B, Wu J (2015) Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium. Int J Nanomedicine 10:727–737.  https://doi.org/10.2147/ijn.s75706 PubMedPubMedCentralGoogle Scholar
  30. Cole SJ, Records AR, Orr MW, Linden SB, Lee VT (2014) Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide independent biofilms. Infect Immun 82(5):2048–2058.  https://doi.org/10.1128/iai.01652-14 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440.  https://doi.org/10.1016/j.actbio.2010.11.005. PubMedCrossRefGoogle Scholar
  32. Craigen B, Dashiff A, Kadouri DE (2011) The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J 5:21–31.  https://doi.org/10.2174/1874285801105010021. PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cvitkovitch DG, Li Y-H, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112(11):1626–1632.  https://doi.org/10.1172/jci200320430 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dave V, Yadav RB, Kushwaha K, Yadav S, Sharma S, Agrawal U (2017) Lipid-polymer hybrid nanoparticles: development & statistical optimization of norfloxacin for topical drug delivery system. Bioact Mater 2(4):269–280.  https://doi.org/10.1016/j.bioactmat.2017.07.002. CrossRefGoogle Scholar
  35. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298.  https://doi.org/10.1126/science.280.5361.295 PubMedCrossRefGoogle Scholar
  36. de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184.  https://doi.org/10.1371/journal.pmed.1002184 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Denstedt JD, Wollin TA, Reid G (1998) Biomaterials used in urology: current issues of biocompatibility, infection, and encrustation. J Endourol 12(6):493–500.  https://doi.org/10.1089/end.1998.12.493 PubMedCrossRefGoogle Scholar
  38. Diaz Blanco C, Ortner A, Dimitrov R, Navarro A, Mendoza E, Tzanov T (2014) Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach. ACS Appl Mater Interfaces 6(14):11385–11393.  https://doi.org/10.1021/am501961b PubMedCrossRefGoogle Scholar
  39. Engler AC, Tan JPK, Ong ZY, Coady DJ, Ng VWL, Yang YY, Hedrick JL (2013) Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14(12):4331–4339.  https://doi.org/10.1021/bm401248t PubMedCrossRefGoogle Scholar
  40. Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E (2012) Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28:12288–12295.  https://doi.org/10.1021/la301432a. PubMedCrossRefGoogle Scholar
  41. Evliyaoǧlu Y, Kobaner M, Çelebi H, Yelsel K, Doǧan A (2011) The efficacy of a novel antibacterial hydroxyapatite nanoparticle-coated indwelling urinary catheter in preventing biofilm formation and catheter-associated urinary tract infection in rabbits. Urol Res 39:443–449.  https://doi.org/10.1007/s00240-011-0379-5. PubMedCrossRefGoogle Scholar
  42. Faure E, Lecomte P, Lenoir S, Vreuls C, Van De Weerdt C, Archambeau C, Martial J, Jerome C, Duwez A-S, Detrembleur C (2011) Sustainable and bio-inspired chemistry for robust antibacterial activity of stainless steel. J Mater Chem 21(22):7901–7904.  https://doi.org/10.1039/c1jm11380a CrossRefGoogle Scholar
  43. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668.  https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 PubMedCrossRefGoogle Scholar
  44. Fernandes MM, Francesko A, Torrent-Burgues J, Carrion-Fite FJ, Heinze T, Tzanov T (2014) Sonochemically processed cationic nanocapsules: efficient antimicrobials with membrane disturbing capacity. Biomacromolecules 15(4):1365–1374.  https://doi.org/10.1021/bm4018947 PubMedCrossRefGoogle Scholar
  45. Fernandes MM, Ivanova K, Francesko A, Rivera D, Torrent-Burgués J, Gedanken A, Mendonza E, Tzanov T (2016) Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomed Nanotechnol Biol Med 12:2061–2069.  https://doi.org/10.1016/j.nano.2016.05.018
  46. Fernandes MM, Ivanova K, Francesko A, Mendoza E, Tzanov T (2017a) Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochem 59:116–122.  https://doi.org/10.1016/j.procbio.2016.09.011 CrossRefGoogle Scholar
  47. Fernandes MM, Ivanova K, Hoyo J, Pérez-Rafael S, Francesko A, Tzanov T (2017b) Nanotransformation of vancomycin overcomes the intrinsic resistance of gram-negative bacteria. ACS Appl Mater Interfaces 9:15022–15030.  https://doi.org/10.1021/acsami.7b00217
  48. Francesko A, Blandón L, Vázquez M, Petkova P, Morató J, Pfeifer A, Heinze T, Mendoza E, Tzanov T (2015) Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles. ACS Appl Mater Interfaces 7:9792–9799.  https://doi.org/10.1021/acsami.5b01670. PubMedCrossRefGoogle Scholar
  49. Francesko A, Fernandes MM, Ivanova K, Amorim S, Reis RL, Pashkuleva I, Mendoza E, Pfeifer A, Heinze T, Tzanov T (2016) Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater 33:203–212.  https://doi.org/10.1016/j.actbio.2016.01.020. PubMedCrossRefGoogle Scholar
  50. Frei R, Breitbach AS, Blackwell HE (2012) 2-aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew Chem Int Ed 51(21):5226–5229.  https://doi.org/10.1002/anie.201109258 CrossRefGoogle Scholar
  51. Frère J-M (1995) Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol 16(3):385–395.  https://doi.org/10.1111/j.1365-2958.1995.tb02404.x PubMedCrossRefGoogle Scholar
  52. Fu J, Ji J, Yuan W, Shen J (2005) Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 26(33):6684–6692.  https://doi.org/10.1016/j.biomaterials.2005.04.034. PubMedCrossRefGoogle Scholar
  53. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2010) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111(1):28–67.  https://doi.org/10.1021/cr100109t PubMedCrossRefGoogle Scholar
  54. Ge L, Zhao Y-s, Mo T, Li J-r, Li P (2012) Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control 26(1):188–193.  https://doi.org/10.1016/j.foodcont.2012.01.022. CrossRefGoogle Scholar
  55. Ghasemi T, Arash V, Rabiee SM, Rajabnia R, Pourzare A, Rakhshan V (2017) Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study. Microsc Res Tech 80(6):599–607.  https://doi.org/10.1002/jemt.22835 PubMedCrossRefGoogle Scholar
  56. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178(22):6618–6622.  https://doi.org/10.1128/jb.178.22.6618-6622.1996 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8(5):1670–1684.  https://doi.org/10.1016/j.actbio.2012.01.011 PubMedCrossRefGoogle Scholar
  58. Graisuwan W, Wiarachai O, Ananthanawat C, Puthong S, Soogarun S, Kiatkamjornwong S, Hoven VP (2012) Multilayer film assembled from charged derivatives of chitosan: physical characteristics and biological responses. J Colloid Interface Sci 376(1):177–188.  https://doi.org/10.1016/j.jcis.2012.02.039. PubMedCrossRefGoogle Scholar
  59. Gram L, de Nys R, Maximilien R, Givskov M, Steinberg P, Kjelleberg S (1996) Inhibitory effects of secondary metabolites from the red alga Delisea pulchra on swarming motility of Proteus mirabilis. Appl Environ Microbiol 62(11):4284–4287PubMedPubMedCentralGoogle Scholar
  60. Grover N, Plaks JG, Summers SR, Chado GR, Schurr MJ, Kaar JL (2016) Acylase-containing polyurethane coatings with anti-biofilm activity. Biotechnol Bioeng 113(12):2535–2543.  https://doi.org/10.1002/bit.26019 PubMedCrossRefGoogle Scholar
  61. Gubernator J, Drulis-Kawa Z, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A (2007) In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains. Lett Drug Des Discov 4:297–304.  https://doi.org/10.2174/157018007784620040. CrossRefGoogle Scholar
  62. Guo S, Jańczewski D, Zhu X, Quintana R, He T, Neoh KG (2015) Surface charge control for zwitterionic polymer brushes: tailoring surface properties to antifouling applications. J Colloid Interface Sci 452:43–53.  https://doi.org/10.1016/j.jcis.2015.04.013. PubMedCrossRefGoogle Scholar
  63. Gupta P, Chhibber S, Harjai K (2015) Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns 41(1):153–162.  https://doi.org/10.1016/j.burns.2014.06.009. PubMedCrossRefGoogle Scholar
  64. He W, Kim H-K, Wamer WG, Melka D, Callahan JH, Yin J-J (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136(2):750–757.  https://doi.org/10.1021/ja410800y PubMedCrossRefGoogle Scholar
  65. Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R, Edwards MJ, Mühlemann K, Steinmann J, Kleuser B, Japtok L, Luginbühl M, Wolfmeier H, Scherag A, Gulbins E, Kadioglu A, Draeger A, Babiychuk EB (2014) Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 33(1):81–88.  https://doi.org/10.1038/nbt.3037 PubMedCrossRefGoogle Scholar
  66. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307.  https://doi.org/10.1172/JCI200320074 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr S-U, Aparicio C (2013) Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater 9(9):8224–8231.  https://doi.org/10.1016/j.actbio.2013.06.017 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang L (2013) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8(5):336–340.  https://doi.org/10.1038/nnano.2013.54 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5(8):631–642.  https://doi.org/10.1007/s13238-014-0061-0 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hume EBH, Baveja J, Muir B, Schubert TL, Kumar N, Kjelleberg S, Griesser HJ, Thissen H, Read R, Poole-Warren LA, Schindhelm K, Willcox MDP (2004) The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials 25(20):5023–5030.  https://doi.org/10.1016/j.biomaterials.2004.01.048. PubMedCrossRefGoogle Scholar
  71. Hung CS, Henderson JP (2009) Emerging concepts of biofilms in infectious diseases. Mo Med 106(4):292–296PubMedGoogle Scholar
  72. Ivanova K, Fernandes MM, Mendoza E, Tzanov T (2015a) Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl Microbiol Biotechnol 99(10):1–13.  https://doi.org/10.1007/s00253-015-6378-7 CrossRefGoogle Scholar
  73. Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T (2015b) Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl Mater Interfaces 7(49):27066–27077.  https://doi.org/10.1021/acsami.5b09489
  74. Izano EA, Wang H, Ragunath C, Ramasubbu N, Kaplan JB (2007) Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin b and sds. J Dent Res 86(7):618–622.  https://doi.org/10.1177/154405910708600707 PubMedCrossRefGoogle Scholar
  75. Jasovský D, Littmann J, Zorzet A, Cars O (2016) Antimicrobial resistance—a threat to the world’s sustainable development. Ups J Med Sci 121(3):159–164.  https://doi.org/10.1080/03009734.2016.1195900 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jiang Y, Zheng W, Kuang L, Ma H, Liang H (2017) Hydrophilic phage-mimicking membrane active antimicrobials reveal nanostructure-dependent activity and selectivity. ACS Infect Dis 3:676–687.  https://doi.org/10.1021/acsinfecdis.7b00076. PubMedCrossRefGoogle Scholar
  77. Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol 63:3724–3728PubMedPubMedCentralGoogle Scholar
  78. Kalpana B, Aarthy S, Pandian S (2012) Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167:1778–1794.  https://doi.org/10.1007/s12010-011-9526-2. PubMedCrossRefGoogle Scholar
  79. Karaaslan A, Çağan E, Kadayifci EK, Atıcı S, Akkoç G, Yakut N, Demir SÖ, Soysal A, Bakır M (2016) Intravenous colistin use for multidrug-resistant gram-negative infections in pediatric patients. Balk Med J 33:627–632.  https://doi.org/10.5152/balkanmedj.2016.16210. CrossRefGoogle Scholar
  80. Kasper SH, Hart R, Bergkvist M, Musah RA, Cady NC (2016) Zein nanocapsules as a tool for surface passivation, drug delivery and biofilm prevention. AIMS Microbiol 2(4):422–433.  https://doi.org/10.3934/microbiol.2016.4.422. CrossRefGoogle Scholar
  81. Kayumov AR, Nureeva AA, Trizna EY, Gazizova GR, Bogachev MI, Shtyrlin NV, Pugachev MV, Sapozhnikov SV, Shtyrlin YG (2015) New derivatives of pyridoxine exhibit high antibacterial activity against biofilm-embedded Staphylococcus cells. Biomed Res Int 2015:890968.  https://doi.org/10.1155/2015/890968 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kishen A, Shi Z, Shrestha A, Neoh KG (2008) An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 34:1515–1520.  https://doi.org/10.1016/j.joen.2008.08.035
  83. Kratochvil MJ, Tal-Gan Y, Yang T, Blackwell HE, Lynn DM (2015) Nanoporous superhydrophobic coatings that promote the extended release of water-labile quorum sensing inhibitors and enable long-term modulation of quorum sensing in Staphylococcus aureus. ACS Biomater Sci Eng 1(10):1039–1049.  https://doi.org/10.1021/acsbiomaterials.5b00313 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3):510–543.  https://doi.org/10.1128/mmbr.00013-14 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lee C-R, Cho IH, Jeong BC, Lee SH (2013) Strategies to minimize antibiotic resistance. Int J Env Res Public Health 10(9):4274–4305.  https://doi.org/10.3390/ijerph10094274 CrossRefGoogle Scholar
  86. Lee J, Lee I, Nam J, Hwang DS, Yeon K-M, Kim J (2017) Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl Mater Interfaces 9(18):15424–15432.  https://doi.org/10.1021/acsami.7b01528 PubMedCrossRefGoogle Scholar
  87. Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine 7:1175–1188.  https://doi.org/10.2147/IJN.S26770. PubMedPubMedCentralGoogle Scholar
  88. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12(12):2519–2538.  https://doi.org/10.3390/s120302519 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li X, Li P, Saravanan R, Basu A, Mishra B, Lim SH, Su X, Tambyah PA, Leong SS (2014) Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 10(1):258–266.  https://doi.org/10.1016/j.actbio.2013.09.009 PubMedCrossRefGoogle Scholar
  90. Li M, Gao L, Schlaich C, Zhang J, Donskyi IS, Yu G, Li W, Tu Z, Rolff J, Schwerdtle T, Haag R, Ma N (2017) Construction of functional coatings with durable and broad-spectrum antibacterial potential based on mussel-inspired dendritic polyglycerol and in situ-formed copper nanoparticles. ACS Appl Mater Interfaces 9(40):35411–35418.  https://doi.org/10.1021/acsami.7b10541 PubMedCrossRefGoogle Scholar
  91. Lipovsky A, Thallinger B, Perelshtein I, Ludwig R, Sygmund C, Nyanhongo GS, Guebitz GM, Gedanken A (2015) Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes. J Mater Chem 3(35):7014–7019.  https://doi.org/10.1039/c5tb00671f CrossRefGoogle Scholar
  92. Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang Y-Y (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via michael addition. Adv Mater 24(48):6484–6489.  https://doi.org/10.1002/adma.201202225 PubMedCrossRefGoogle Scholar
  93. Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9(23):4069–4076.  https://doi.org/10.1002/smll.201301081 PubMedCrossRefGoogle Scholar
  94. Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551.  https://doi.org/10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  95. Mateescu M, Baixe S, Garnier T, Jierry L, Ball V, Haikel Y, Metz-Boutigue MH, Nardin M, Schaaf P, Etienne O, Lavalle P (2015) Antibacterial peptide-based gel for prevention of medical implanted-device infection. PLoS One 10:e0145143.  https://doi.org/10.1371/journal.pone.0145143. PubMedPubMedCentralCrossRefGoogle Scholar
  96. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179PubMedPubMedCentralGoogle Scholar
  97. Meruvu H, Vangalapati M, Chaitanya Chippada S, Rao Bammidi S (2011) Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan J Chem 4:217–222Google Scholar
  98. Miller KP, Wang L, Chen Y-P, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189.  https://doi.org/10.3389/fmicb.2015.00189 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Minier M, Salmain M, Yacoubi N, Barbes L, Méthivier C, Zanna S, Pradier C-M (2005) Covalent immobilization of lysozyme on stainless steel. Interface spectroscopic characterization and measurement of enzymatic activity. Langmuir 21:5957–5965.  https://doi.org/10.1021/la0501278. PubMedCrossRefGoogle Scholar
  100. Mishra RK, Segal E, Lipovsky A, Natan M, Banin E, Gedanken A (2015) New life for an old antibiotic. ACS Appl Mater Interfaces 7(13):7324–7333.  https://doi.org/10.1021/acsami.5b00563 PubMedCrossRefGoogle Scholar
  101. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectrum 4.  https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  102. Muszanska AK, Busscher HJ, Herrmann A, van der Mei HC, Norde W (2011) Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials 32(26):6333–6341.  https://doi.org/10.1016/j.biomaterials.2011.05.016. PubMedCrossRefGoogle Scholar
  103. Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, Hartmann RW, Lehr C-M, Schneider M (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140.  https://doi.org/10.1016/j.jconrel.2014.06.055. PubMedCrossRefGoogle Scholar
  104. Natan M, Edin F, Perkas N, Yacobi G, Perelshtein I, Segal E, Homsy A, Laux E, Keppner H, Rask-Andersen H, Gedanken A, Banin E (2016) Two are better than one: combining ZnO and MgF2 nanoparticles reduces Streptococcus pneumoniae and Staphylococcus aureus biofilm formation on cochlear implants. Adv Funct Mater 26(15):2473–2481.  https://doi.org/10.1002/adfm.201504525 CrossRefGoogle Scholar
  105. Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901.  https://doi.org/10.1021/nl080522t PubMedCrossRefGoogle Scholar
  106. Nikitina EV, Zeldi MI, Pugachev MV, Sapozhnikov SV, Shtyrlin NV, Kuznetsova SV, Evtygin VE, Bogachev MI, Kayumov AR, Shtyrlin YG (2015) Antibacterial effects of quaternary bis-phosphonium and ammonium salts of pyridoxine on Staphylococcus aureus cells: a single base hitting two distinct targets? World J Microbiol Biotechnol 32(1):5.  https://doi.org/10.1007/s11274-015-1969-0 PubMedCrossRefGoogle Scholar
  107. Nyanhongo GS, Sygmund C, Ludwig R, Prasetyo EN, Guebitz GM (2013) An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds. Eur J Pharm Biopharm 83(3):396–404.  https://doi.org/10.1016/j.ejpb.2012.10.013. PubMedCrossRefGoogle Scholar
  108. Obłąk E, Piecuch A, Guz-Regner K, Dworniczek E (2014) Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiol Lett 350(2):190–198.  https://doi.org/10.1111/1574-6968.12331 PubMedCrossRefGoogle Scholar
  109. Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, Mulder GJ, Mackinson C, Ambrose PG, Gupta R (2009) Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother 53(9):3847–3854.  https://doi.org/10.1128/AAC.00872-08 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL, Zhu G, Metzger DW, Kane RS, Dordick JS (2010) Antistaphylococcal nanocomposite films based on enzyme−nanotube conjugates. ACS Nano 4(7):3993–4000.  https://doi.org/10.1021/nn100932t PubMedPubMedCentralCrossRefGoogle Scholar
  111. Paslay LC, Abel BA, Brown TD, Koul V, Choudhary V, McCormick CL, Morgan SE (2012) Antimicrobial poly(methacrylamide) derivatives prepared via aqueous raft polymerization exhibit biocidal efficiency dependent upon cation structure. Biomacromolecules 13(8):2472–2482.  https://doi.org/10.1021/bm3007083 PubMedCrossRefGoogle Scholar
  112. Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA (2012) Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces 4(9):4708–4716.  https://doi.org/10.1021/am3010847 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13-14):1803–1815.  https://doi.org/10.1016/j.addr.2013.07.011. PubMedCrossRefGoogle Scholar
  114. Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid zno/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 6:1164–1172.  https://doi.org/10.1021/am404852d. PubMedCrossRefGoogle Scholar
  115. Petkova P, Francesko A, Perelshtein I, Gedanken A, Tzanov T (2016) Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial zno nanoparticles. Ultrason Sonochem 29:244–250.  https://doi.org/10.1016/j.ultsonch.2015.09.021. PubMedCrossRefGoogle Scholar
  116. Podporska-Carroll J, Myles A, Quilty B, McCormack DE, Fagan R, Hinder SJ, Dionysiou DD, Pillai SC (2017) Antibacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater 324(Pt A):39–47.  https://doi.org/10.1016/j.jhazmat.2015.12.038. PubMedCrossRefGoogle Scholar
  117. Quirynen M, Bollen CML (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. J Clin Periodontol 22(1):1–14.  https://doi.org/10.1111/j.1600-051X.1995.tb01765.x. PubMedCrossRefGoogle Scholar
  118. Rai A, Pinto S, Evangelista MB, Gil H, Kallip S, Ferreira MGS, Ferreira L (2016) High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater 33:64–77.  https://doi.org/10.1016/j.actbio.2016.01.035. PubMedCrossRefGoogle Scholar
  119. Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976.  https://doi.org/10.1021/acsami.6b00161. PubMedCrossRefGoogle Scholar
  120. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3(11):731–736.  https://doi.org/10.1046/j.1462-2920.2001.00249.x PubMedCrossRefGoogle Scholar
  121. Ren P-F, Yang H-C, Liang H-Q, Xu X-L, Wan L-S, Xu Z-K (2015) Highly stable, protein-resistant surfaces via the layer-by-layer assembly of poly(sulfobetaine methacrylate) and tannic acid. Langmuir 31(21):5851–5858.  https://doi.org/10.1021/acs.langmuir.5b00920 PubMedCrossRefGoogle Scholar
  122. Saini R, Saini S, Sharma S (2011) Biofilm: a dental microbial infection. J Nat Sci Biol Med 2:71–75.  https://doi.org/10.4103/0976-9668.82317. PubMedPubMedCentralCrossRefGoogle Scholar
  123. Saldarriaga Fernández IC, van der Mei HC, Lochhead MJ, Grainger DW, Busscher HJ (2007) The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials 28(28):4105–4112.  https://doi.org/10.1016/j.biomaterials.2007.05.023. PubMedCrossRefGoogle Scholar
  124. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30):9798–9808.  https://doi.org/10.1021/ja061442z PubMedCrossRefGoogle Scholar
  125. Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, Krull R, Klages C-P (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4(4):044113.  https://doi.org/10.1063/1.3523059 PubMedCentralCrossRefGoogle Scholar
  126. Secinti KD, Özalp H, Attar A, Sargon MF (2011) Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci 18(3):391–395.  https://doi.org/10.1016/j.jocn.2010.06.022 PubMedCrossRefGoogle Scholar
  127. Séon L, Lavalle P, Schaaf P, Boulmedais F (2015) Polyelectrolyte multilayers: a versatile tool for preparing antimicrobial coatings. Langmuir 31(47):12856–12872.  https://doi.org/10.1021/acs.langmuir.5b02768 PubMedCrossRefGoogle Scholar
  128. Shalom Y, Perelshtein I, Perkas N, Gedanken A, Banin E (2017) Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res 10(2):520–533.  https://doi.org/10.1007/s12274-016-1310-8 CrossRefGoogle Scholar
  129. Shi J, Liu Y, Wang Y, Zhang J, Zhao S, Yang G (2015) Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep 5(1):16336.  https://doi.org/10.1038/srep16336 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shimanovich U, Lipovsky A, Eliaz D, Zigdon S, Knowles TP, Nitzan Y, Michaeli S, Gedanken A (2015) Tetracycline nanoparticles as antibacterial and gene-silencing agents. Adv Healthc Mater 4(5):723–728.  https://doi.org/10.1002/adhm.201400631 PubMedCrossRefGoogle Scholar
  131. Shirvan AR, Nejad NH, Bashari A (2014) Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers. Fibers Polym 15(9):1908–1914.  https://doi.org/10.1007/s12221-014-1908-y CrossRefGoogle Scholar
  132. Shorr A, Lodise T (2006) Burden of methicillin-resistant Staphylococcus aureus on healthcare cost and resource utilization. ISMR. Update 1:1–12Google Scholar
  133. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242.  https://doi.org/10.1007/s40820-015-0040-x CrossRefGoogle Scholar
  134. Smith RS, Zhang Z, Bouchard M, Li J, Lapp HS, Brotske GR, Lucchino DL, Weaver D, Roth LA, Coury A, Biggerstaff J, Sukavaneshvar S, Langer R, Loose C (2012) Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci Transl Med 4(153):153ra132.  https://doi.org/10.1126/scitranslmed.3004120 PubMedCrossRefGoogle Scholar
  135. Smriti Rekha D, Ashwani Kumar S, Pradeep K (2015) Cationic polymers and their self-assembly for antibacterial applications. Curr Top Med Chem 15(13):1179–1195.  https://doi.org/10.2174/1568026615666150330110602. CrossRefGoogle Scholar
  136. Tang H, Cao T, Liang X, Wang A, Salley SO, McAllister J, Ng KY (2009) Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res A 88A:454–463.  https://doi.org/10.1002/jbm.a.31788. CrossRefGoogle Scholar
  137. Thallinger B, Argirova M, Lesseva M, Ludwig R, Sygmund C, Schlick A, Nyanhongo GS, Guebitz GM (2014) Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase. Int J Antimicrob Agents 44(5):402–408.  https://doi.org/10.1016/j.ijantimicag.2014.06.016. PubMedCrossRefGoogle Scholar
  138. Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V, Zhang L (2017) Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci 114(43):11488–11493.  https://doi.org/10.1073/pnas.1714267114 PubMedCrossRefGoogle Scholar
  139. Timofeeva L, Kleshcheva N (2011) Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 89(3):475–492.  https://doi.org/10.1007/s00253-010-2920-9 PubMedCrossRefGoogle Scholar
  140. Tischer M, Pradel G, Ohlsen K, Holzgrabe U (2012) Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? ChemMedChem 7(1):22–31.  https://doi.org/10.1002/cmdc.201100404 PubMedCrossRefGoogle Scholar
  141. Townsend L, Williams RL, Anuforom O, Berwick MR, Halstead F, Hughes E, Stamboulis A, Oppenheim B, Gough J, Grover L, Scott RAH, Webber M, Peacock AFA, Belli A, Logan A, de Cogan F (2017) Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces. J R Soc Interface 14(126):20160657.  https://doi.org/10.1098/rsif.2016.0657 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Trautner B, Darouiche R (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32(3):177–183.  https://doi.org/10.1016/j.ajic.2003.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40:277–283Google Scholar
  144. Vinoj G, Pati R, Sonawane A, Vaseeharan B (2015) In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against proteus species. Antimicrob Agents Chemother 59(2):763–771.  https://doi.org/10.1128/aac.03047-14 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Voo ZX, Khan M, Narayanan K, Seah D, Hedrick JL, Yang YY (2015) Antimicrobial/antifouling polycarbonate coatings: role of block copolymer architecture. Macromolecules 48(4):1055–1064.  https://doi.org/10.1021/ma5022488 CrossRefGoogle Scholar
  146. Walker SL, Fourgialakis M, Cerezo B, Livens S (2007) Removal of microbial biofilms from dispense equipment: the effect of enzymatic pre-digestion and detergent treatment. J Inst Brew 113(1):61–66.  https://doi.org/10.1002/j.2050-0416.2007.tb00257.x CrossRefGoogle Scholar
  147. Wang W, Morohoshi T, Ikeda T, Chen L (2008) Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous. Acta Biochim Biophys Sin 40(12):1023–1028.  https://doi.org/10.1111/j.1745-7270.2008.00490.x PubMedCrossRefGoogle Scholar
  148. Wang Y, Hong Q, Chen Y, Lian X, Xiong Y (2012) Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf B Biointerfaces 100:77–83.  https://doi.org/10.1016/j.colsurfb.2012.05.030. PubMedCrossRefGoogle Scholar
  149. Wang F, Gao W, Thamphiwatana S, Luk BT, Angsantikul P, Zhang Q, Hu C-MJ, Fang RH, Copp JA, Pornpattananangkul D, Lu W, Zhang L (2015) Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant Staphylococcus aureus infection. Adv Mater 27(22):3437–3443.  https://doi.org/10.1002/adma.201501071 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wang L-S, Gupta A, Rotello VM (2016a) Nanomaterials for the treatment of bacterial biofilms. ACS Infect Dis 2:3–4.  https://doi.org/10.1021/acsinfecdis.5b00116. PubMedCrossRefGoogle Scholar
  151. Wang W, Lu Y, Xie J, Zhu H, Cao Z (2016b) A zwitterionic macro-crosslinker for durable non-fouling coatings. Chem Commun 52(25):4671–4674.  https://doi.org/10.1039/c6cc00109b CrossRefGoogle Scholar
  152. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249.  https://doi.org/10.2147/ijn.s121956 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wong SY, Li Q, Veselinovic J, Kim B-S, Klibanov AM, Hammond PT (2010) Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials 31(14):4079–4087.  https://doi.org/10.1016/j.biomaterials.2010.01.119. PubMedCrossRefGoogle Scholar
  154. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53(6):1054–1061.  https://doi.org/10.1093/jac/dkh223 PubMedCrossRefGoogle Scholar
  155. Yariv I, Lipovsky A, Gedanken A, Lubart R, Fixler D (2015) Enhanced pharmacological activity of vitamin B(1)(2) and penicillin as nanoparticles. Int J Nanomedicine 10:3593–3601.  https://doi.org/10.2147/IJN.S82482. PubMedPubMedCentralGoogle Scholar
  156. Yeroslavsky G, Girshevitz O, Foster-Frey J, Donovan DM, Rahimipour S (2015) Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme. Langmuir 31(3):1064–1073.  https://doi.org/10.1021/la503911m PubMedCrossRefGoogle Scholar
  157. Yu K, Lo JCY, Yan M, Yang X, Brooks DE, Hancock REW, Lange D, Kizhakkedathu JN (2017) Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116:69–81.  https://doi.org/10.1016/j.biomaterials.2016.11.047. PubMedCrossRefGoogle Scholar
  158. Yuan S, Wan D, Liang B, Pehkonen SO, Ting YP, Neoh KG, Kang ET (2011) Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)−stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir 27(6):2761–2774.  https://doi.org/10.1021/la104442f PubMedCrossRefGoogle Scholar
  159. Zhang H, Chiao M (2015) Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng 35(2):143–155.  https://doi.org/10.1007/s40846-015-0029-4 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhang Z, Finlay JA, Wang L, Gao Y, Callow JA, Callow ME, Jiang S (2009) Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir 25(23):13516–13521.  https://doi.org/10.1021/la901957k PubMedCrossRefGoogle Scholar
  161. Zhang T, Zhou P, Zhan Y, Shi X, Lin J, Du Y, Li X, Deng H (2015) Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydr Polym 117:687–693.  https://doi.org/10.1016/j.carbpol.2014.10.064. PubMedCrossRefGoogle Scholar
  162. Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438.  https://doi.org/10.1016/j.colsurfb.2014.01.016. PubMedCrossRefGoogle Scholar
  163. Zhu X, Jun Loh X (2015) Layer-by-layer assemblies for antibacterial applications. Biomater Sci 3(12):1505–1518.  https://doi.org/10.1039/c5bm00307e PubMedCrossRefGoogle Scholar
  164. Zwaal RFA, Comfurius P, Van Deenen LLM (1977) Membrane asymmetry and blood coagulation. Nature 268:358–360PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arnau Bassegoda
    • 1
  • Kristina Ivanova
    • 1
  • Eva Ramon
    • 1
  • Tzanko Tzanov
    • 1
  1. 1.Group of Molecular and Industrial Biotechnology, Department of Chemical EngineeringUniversitat Politècnica de CatalunyaTerrassaSpain

Personalised recommendations