Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84(5):847–865. https://doi.org/10.1007/s00253-009-2156-8
CAS
Article
PubMed
Google Scholar
Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Non-conventional yeasts in biotechnology a handbook. Springer, Berlin, Heidelberg, New York, pp 313–388. https://doi.org/10.1007/978-3-642-79856-6_10
Chapter
Google Scholar
Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73. https://doi.org/10.1016/j.ymben.2015.09.005
CAS
Article
PubMed
Google Scholar
Blazeck J, Hill A, Liu LQ, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5. https://doi.org/10.1038/ncomms4131
Blazeck J, Liu LQ, Knight R, Alper HS (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165(3–4):184–194. https://doi.org/10.1016/j.jbiotec.2013.04.003
CAS
Article
PubMed
Google Scholar
Blazeck J, Liu LQ, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microb 77(22):7905–7914. https://doi.org/10.1128/AEM.05763-11
CAS
Article
Google Scholar
Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PLoS One 8(9):e73076. https://doi.org/10.1371/journal.pone.0073076
CAS
Article
PubMed
PubMed Central
Google Scholar
Brigida AIS, Amaral PFF, Coelho MAZ, Goncalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B-Enzym 101:148–158. https://doi.org/10.1016/j.molcatb.2013.11.016
CAS
Article
Google Scholar
Corzo G, Revah S (1999) Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresour Technol 70(2):173–180. https://doi.org/10.1016/S0960-8524(99)00024-3
CAS
Article
Google Scholar
Curran KA, Crook NC, Karim AS, Gupta A, Wagman AM, Alper HS (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun 5. https://doi.org/10.1038/ncomms5002
D’Annibale A, Sermanni GG, Federici F, Petruccioli M (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol 97(15):1828–1833. https://doi.org/10.1016/j.biortech.2005.09.001
Article
PubMed
Google Scholar
Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. J Biomed Biotechnol
Google Scholar
Evans CT, Ratledge C (1984) Effect of nitrogen-source on lipid-accumulation in oleaginous yeasts. J Gen Microbiol 130(Jul):1693–1704
CAS
Google Scholar
Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543. https://doi.org/10.1016/j.femsyr.2004.09.004
CAS
Article
PubMed
Google Scholar
Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol 96(4):742–749. https://doi.org/10.1111/j.1365-2672.2004.02190.x
CAS
Article
PubMed
Google Scholar
Godia F, Albiol J, Montesinos JL, Perez J, Creus N, Cabello F, Mengual X, Montras A, Lasseur C (2002) MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol 99(3):319–330
CAS
Article
PubMed
Google Scholar
Goncalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J
Haddouche R, Delessert S, Sabirova J, Neuveglise C, Poirier Y, Nicaud JM (2010) Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards beta-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res 10(7):917–927. https://doi.org/10.1111/j.1567-1364.2010.00670.x
CAS
Article
PubMed
Google Scholar
Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12(1):35–73. https://doi.org/10.1385/MB:12:1:35
CAS
Article
PubMed
Google Scholar
Imandi SB, Bandaru VVR, Somalanka SR, Bandaru SR, Garapati HR (2008) Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour Technol 99(10):4445–4450. https://doi.org/10.1016/j.biortech.2007.08.071
CAS
Article
PubMed
Google Scholar
Karakaya A, Laleli Y, Takac S (2012) Development of process conditions for biodegradation of raw olive mill wastewater by Rhodotorula glutinis. Int Biodeter Biodegr 75:75–82
CAS
Article
Google Scholar
Kunze M, Pracharoenwattana I, Smith SM, Hartig A (2006) A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim Biophys Acta 1763(12):1441–1452. https://doi.org/10.1016/j.bbamcr.2006.09.009
CAS
Article
PubMed
Google Scholar
Lanciotti R, Gianotti A, Baldi D, Angrisani R, Suzzi G, Mastrocola D, Guerzoni ME (2005) Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour Technol 96(3):317–322
CAS
Article
PubMed
Google Scholar
Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46. https://doi.org/10.1016/j.ymben.2016.06.004
CAS
Article
PubMed
Google Scholar
Liu XY, Wang XF, Xu JX, Xia J, Lv JS, Zhang T, Wu Z, Deng YF, He JL (2015) Citric acid production by Yarrowia lipolytica SWJ-1b using corn steep liquor as a source of organic nitrogen and vitamins. Ind Crop Prod 78:154–160. https://doi.org/10.1016/j.indcrop.2015.10.029
CAS
Article
Google Scholar
Menezes AA, Cumbers J, Hogan JA, Arkin AP (2015) Towards synthetic biological approaches to resource utilization on space missions. J R Soc Interface 12(102)
Moftah OAS, Grbavcic SZ, Moftah WAS, Lukovic ND, Prodanovic OL, Jakovetic SM, Knezevic-Jugovic ZD (2013) Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J Serb Chem Soc 78(6):781–794. https://doi.org/10.2298/JSC120905005M
CAS
Article
Google Scholar
Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37. https://doi.org/10.1016/S0960-8524(02)00063-9
CAS
Article
PubMed
Google Scholar
Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49. https://doi.org/10.1016/S0960-8524(01)00149-3
CAS
Article
PubMed
Google Scholar
Papanikolaou S, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2007) Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron J Biotechnol 10(3):425–435
CAS
Article
Google Scholar
Prinz S, Avila-Campillo I, Aldridge C, Srinivasan A, Dimitrov K, Siegel AF, Galitski T (2004) Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res 14(3):380–390. https://doi.org/10.1101/gr.2020604
CAS
Article
PubMed
PubMed Central
Google Scholar
Qian WF, Liao BY, Chang AYF, Zhang JZ (2010) Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet 26(10):425–430. https://doi.org/10.1016/j.tig.2010.07.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, Kumaran Ajikumar P, Stephanopoulos G (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65. https://doi.org/10.1016/j.ymben.2015.02.005
CAS
Article
PubMed
Google Scholar
Rigouin C, Gueroult M, Croux C, Dubois G, Borsenberger V, Barbe S, Marty A, Daboussi F, Andre I, Bordes F (2017) Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase. ACS Synth Biol 6(10):1870–1879. https://doi.org/10.1021/acssynbio.7b00034
Article
PubMed
Google Scholar
Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M (2016) Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels 9:149
Article
PubMed
PubMed Central
Google Scholar
Rodriguez-Vargas S, Sanchez-Garcia A, Martinez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microb 73(1):110–116. https://doi.org/10.1128/AEM.01360-06
CAS
Article
Google Scholar
Roon RJ, Levenberg B, Hampshire J (1972) Urea amidolyase—involvement of biotin in urea cleavage. J Biol Chem 247(23):7539
CAS
PubMed
Google Scholar
Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S (2011) Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biot 86(11):1439–1448
CAS
Article
Google Scholar
Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6(3):402–409
CAS
Article
PubMed
Google Scholar
Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359. https://doi.org/10.1021/acssynbio.5b00162
CAS
Article
PubMed
Google Scholar
Shabbir Hussain M, Gambill L, Smith S, Blenner MA (2016a) Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica. ACS Synth Biol 5(3):213–223. https://doi.org/10.1021/acssynbio.5b00100
CAS
Article
PubMed
Google Scholar
Shabbir Hussain M, Rodriguez G, Gao D, Spagnaulo M, Gambill L, Blenner M (2016b) Recent advances in metabolic engineering of Yarrowia lipolytica. AIMS Bioeng 3(4):493–514. https://doi.org/10.3934/bioeng.2016.4.493
Article
Google Scholar
Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353(6299):583–586. https://doi.org/10.1126/science.aaf6159
CAS
Article
PubMed
Google Scholar
Szabo R (1999) Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol 44(1):19–24. https://doi.org/10.1007/BF02816215
CAS
Article
Google Scholar
Tsigie YA, Wang CY, Truong CT, Ju YH (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222. https://doi.org/10.1016/j.biortech.2011.06.047
CAS
Article
PubMed
Google Scholar
Vavouri T, Semple JI, Lehner B (2008) Widespread conservation of genetic redundancy during a billion years of eukaryotic evolution. Trends Genet 24(10):485–488. https://doi.org/10.1016/j.tig.2008.08.005
CAS
Article
PubMed
Google Scholar
Wang GK, Xiong XC, Ghogare R, Wang PD, Meng YH, Chen SL (2016) Exploring fatty alcohol-producing capability of Yarrowia lipolytica. Biotechnol Biofuels 9
Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31(8):734–740. https://doi.org/10.1038/nbt.2622
CAS
Article
PubMed
Google Scholar
Yano Y, Oikawa H, Satomi M (2008) Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowia lipolytica. Int J Food Microbiol 121(3):302–307
CAS
Article
PubMed
Google Scholar
Zhao MX, Chi Z, Chi ZM, Madzak C (2013) The simultaneous production of single-cell protein and a recombinant antibacterial peptide by expression of an antibacterial peptide gene in Yarrowia lipolytica. Process Biochem 48(2):212–217. https://doi.org/10.1016/j.procbio.2013.01.003
CAS
Article
Google Scholar