Skip to main content

Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation

Abstract

Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13(1):59–66. https://doi.org/10.1007/s00792-008-0197-z

    CAS  Article  PubMed  Google Scholar 

  2. Bonthrone KM, Clauss J, Horowitz DM, Hunter BK, Sanders JKM (1992) The biological and physical chemistry of polyhydroxyalkanoates as seen by NMR spectroscopy. FEMS Microbiol Lett 103(2–4):269–277. https://doi.org/10.1111/j.1574-6968.1992.tb05848.x

    CAS  Article  Google Scholar 

  3. Dong TG, Dong S, Catalano C, Moore R, Liang X, Mekalanos JJ (2015) Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci USA 112(7):2181–2186. https://doi.org/10.1073/pnas.1425007112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Farías ME, Fernández-Zenoff V, Flores R, Ordóñez O, Estévez C (2009) Impact of solar radiation on bacterioplankton in Laguna Vilama, a hypersaline Andean lake (4650 m). J Geophys Res Biogeosci 114:G00D04

    Article  Google Scholar 

  5. Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97(3):993–1004. https://doi.org/10.1007/s00253-012-4642-7

    CAS  Article  PubMed  Google Scholar 

  6. Galan B, Dinjaski N, Maestro B, de Eugenio LI, Escapa IF, Sanz JM, Garcia JL and Prieto MA (2011) Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79:402–418. https://doi.org/10.1111/j.1365-2958.2010.07450.x

  7. Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6(3):267–285. https://doi.org/10.1039/B700020K

    Article  PubMed  Google Scholar 

  8. Hwang SO, Feldberg R (1990) Effect of inclusion body production on culture turbidity and cell dry-weight in growing bacterial cultures. Biotechnol Prog 6(1):48–50. https://doi.org/10.1021/bp00001a007

    CAS  Article  PubMed  Google Scholar 

  9. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (Carbonosomes). J Bacteriol 191(10):3195–3202. https://doi.org/10.1128/JB.01723-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Kadouri D, Jurkevitch E, Okon Y (2003a) Involvement of the reserve material poly- beta-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69(6):3244–3250. https://doi.org/10.1128/AEM.69.6.3244-3250.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Kadouri D, Jurkevitch E, Okon Y (2003b) Poly beta-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol 180(5):309–318. https://doi.org/10.1007/s00203-003-0590-z

    CAS  Article  PubMed  Google Scholar 

  12. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31(2):55–67. https://doi.org/10.1080/10408410590899228

    CAS  Article  PubMed  Google Scholar 

  13. Karmann S, Panke S, Zinn M (2017) The bistable behaviour of Pseudomonas putida KT2440 during PHA depolymerization under carbon limitation. Bioengineering 4(2):58. https://doi.org/10.3390/bioengineering4020058

    Article  PubMed Central  Google Scholar 

  14. Khodadad CL, Wong GM, James LM, Thakrar PJ, Lane MA, Catechis JA, Smith DJ (2017) Stratosphere conditions inactivate bacterial endospores from a Mars spacecraft assembly facility. Astrobiology 17(4):337–350. https://doi.org/10.1089/ast.2016.1549

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Kim BM, Rhee JS, Lee KW, Kim MJ, Shin KH, Lee SJ, Lee YM, Lee JS (2015) UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus. Comp Biochem Physiol C 167:15–23

    CAS  Google Scholar 

  16. Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/j.algal.2014.09.002

    Article  Google Scholar 

  17. Mravec F, Obruca S, Krzyzanek V, Sedlacek P, Hrubanova K, Samek O, Kucera D, Benesova P, Nebesarova J (2016) Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol Lett 363:fnw094

    Article  PubMed  Google Scholar 

  18. Obruca S, Benesova P, Oborna J, Marova I (2014) Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol Lett 36(4):775–781. https://doi.org/10.1007/s10529-013-1407-z

    CAS  Article  PubMed  Google Scholar 

  19. Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I (2016a) Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS One 11(6):e0157778. https://doi.org/10.1371/journal.pone.0157778

    Article  PubMed  PubMed Central  Google Scholar 

  20. Obruca S, Sedlacek P, Mravec F, Samek O, Marova I (2016b) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100(3):1365–1376. https://doi.org/10.1007/s00253-015-7162-4

    CAS  Article  PubMed  Google Scholar 

  21. Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubanova K, Milerova M, Marova I (2017) The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol 39(Pt A):68–80. https://doi.org/10.1016/j.nbt.2017.07.008

    CAS  Article  Google Scholar 

  22. Paunescu D, Mora CA, Puddu M, Krumeich F, Grass RN (2014) DNA protection against ultraviolet irradiation by encapsulation in a multilayered SiO2/TiO2 assembly. J Mater Chem B 2(48):8504–8509. https://doi.org/10.1039/C4TB01552E

    CAS  Article  Google Scholar 

  23. Pavez P, Castillo JL, González C, Martínez M (2009) Poly-β-hydroxyalkanoate exert a protective effect against carbon starvation and frozen conditions in Sphingopyxis chilensis. Curr Microbiol 59(6):636–640. https://doi.org/10.1007/s00284-009-9485-9

    CAS  Article  PubMed  Google Scholar 

  24. Pérez V, Hengst M, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V, Matallana-Surget S (2017) Bacterial survival under extreme UV radiation: a comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile. Front Microbiol 8:1173. https://doi.org/10.3389/fmicb.2017.01173

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pham TH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150(10):3405–3413. https://doi.org/10.1099/mic.0.27357-0

    CAS  Article  PubMed  Google Scholar 

  26. Raberg M, Voigt B, Hecker M, Steinbuchel A (2014) A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB-4. PLoS One 9(5):e95907. https://doi.org/10.1371/journal.pone.0095907

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its component. J Photochem Photobiol B 63(1-3):88–102. https://doi.org/10.1016/S1011-1344(01)00206-8

    CAS  Article  PubMed  Google Scholar 

  28. Singh OV, Gabani P (2011) Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol 110(4):851–861. https://doi.org/10.1111/j.1365-2672.2011.04971.x

    CAS  Article  PubMed  Google Scholar 

  29. Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense cd. Can J Microbiol 31(7):608–613. https://doi.org/10.1139/m85-115

    CAS  Article  Google Scholar 

  30. Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706–754. https://doi.org/10.3390/polym6030706

    Article  Google Scholar 

  31. Tribelli PM, López NI (2011) Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 15(5):541–547. https://doi.org/10.1007/s00792-011-0384-1

    CAS  Article  PubMed  Google Scholar 

  32. Vadlja D, Koller M, Novak M, Braunegg G, Horvat P (2016) Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 100(23):10065–10080. https://doi.org/10.1007/s00253-016-7844-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12(1):262. https://doi.org/10.1186/1471-2180-12-262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Factories 8(1):47. https://doi.org/10.1186/1475-2859-8-47

    Article  Google Scholar 

  35. Wu D, He J, Gong Y, Chen D, Zhu X, Qiu N, Sun M, Li M, Yu Z (2011) Proteomic analysis reveals the strategies of Bacillus thuringiensis YBT-1520 for survival under long-term heat stress. Proteomics 11(13):2580–2591. https://doi.org/10.1002/pmic.201000392

    CAS  Article  PubMed  Google Scholar 

  36. Zhao YH, Li HM, Qin LF, Wang HH, Chen GQ (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276(1):34–41. https://doi.org/10.1111/j.1574-6968.2007.00904.x

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the project “Materials Research Centre at FCH BUT-Sustainability and Development” No. LO1211 of the Ministry of Education, Youth and Sports of the Czech Republic and by the project GP15-20645S of the Czech Science Foundation (GACR).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stanislav Obruca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slaninova, E., Sedlacek, P., Mravec, F. et al. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 102, 1923–1931 (2018). https://doi.org/10.1007/s00253-018-8760-8

Download citation

Keywords

  • Polyhydroxyalkanoates
  • Cupriavidus necator
  • UV radiation
  • Turbidity
  • Integrating sphere
  • Nephelometry