d-lyxose isomerase and its application for functional sugar production

Abstract

Functional sugars have attracted attention because of their wide application prospects in the food, cosmetics, and pharmaceutical industries in recent decades. Compared with complex chemical synthesis, enzymatic methods of creating functional sugars, characterized by high specificity, moderate reaction conditions, and sustainability, are favored. d-lyxose isomerase (d-LI, EC 5.3.1.15), an important aldose-ketose isomerase, catalyzes the reverse isomerization reaction between d-xylulose and d-lyxose, as well as d-fructose and d-mannose. d-LI has drawn researchers’ attention due to its broad substrate specificity and high potential for enzymatic production of some functional sugars such as d-xylulose, d-mannose, and d-ribose. In this article, an overview of recent advances in the biochemical properties of various d-LIs is explored in detail. Structural analysis, active site identification, and catalytic mechanisms are also provided. Additionally, the applications of d-LIs for functional sugar production, including d-lyxose, d-mannose, and l-ribose, are reviewed in detail in this paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmed Z, Sasahara H, Bhuiyan SH, Saiki T, Shimonishi T, Takada G, Izumori K (1999) Production of D-lyxose from D-glucose by microbial and enzymatic reactions. J Biosci Bioeng 88(6):676–678. https://doi.org/10.1016/S1389-1723(00)87100-5

    CAS  Article  PubMed  Google Scholar 

  2. Anderson RL, Allison DP (1965) Purification and characterization of D-lyxose isomerase. J Biol Chem 240(8):2367–2372

    CAS  PubMed  Google Scholar 

  3. Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60(2):280–300

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bicas JL, Silva JC, Pastore GM (2010) Biotechnological production of bioflavors and functional sugars. Cienc Tecnol Aliment 30(1):7–18

    Article  Google Scholar 

  5. Bock K, Meldal M, Meyer B, Wiebe L (1983) Isomerization of D-glucose with glucose-isomerase. A mechanistic study. Acta Chem Scand 37(2):101–108

    CAS  Article  Google Scholar 

  6. Bosshart A, Hee CS, Bechtold M, Schirmer T, Panke S (2015) Directed divergent evolution of a thermostable D-tagatose epimerase towards improved activity for two hexose substrates. Chembiochem 16(4):592–601. https://doi.org/10.1002/cbic.201402620

    CAS  Article  PubMed  Google Scholar 

  7. Bosshart A, Panke S, Bechtold M (2013) Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angew Chem Int Edit 125(37):9855–9858

    Article  Google Scholar 

  8. Chen F, Wei X, Tao Z, Zhou L, Bo J, Mu W (2015) Engineering of Alicyclobacillus hesperidum l-arabinose isomerase for improved catalytic activity and reduced pH optimum using random and site-directed mutagenesis. Appl Biochem Biotechnol 177(7):1480–1492

    Article  Google Scholar 

  9. Chen F, Zhao J, Xiong F, Xie B, Zhang P (2007) An improved synthesis of a key intermediate for (+)-biotin from D-mannose. Carbohydr Res 342(16):2461–2464. https://doi.org/10.1016/j.carres.2007.06.029

    CAS  Article  PubMed  Google Scholar 

  10. Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W (2017) Characterization of a thermostable recombinant L-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of L-fructose and L-rhamnulose. J Sci Food Agric. https://doi.org/10.1002/jsfa.8703

  11. Cho EA, Lee DW, Cha YH, Lee SJ, Jung HC, Pan JG, Pyun YR (2007) Characterization of a novel D-lyxose isomerase from Cohnella laevoribosii RI-39 sp. nov. J Bacteriol 189(5):1655–1663. https://doi.org/10.1128/JB.01568-06

    CAS  Article  PubMed  Google Scholar 

  12. Choi JG, Hong SH, Kim YS, Kim KR, Oh DK (2012) Characterization of a recombinant thermostable D-lyxose isomerase from Dictyoglomus turgidum that produces D-lyxose from D-xylulose. Biotechnol Lett 34(6):1079–1085. https://doi.org/10.1007/s10529-012-0874-y

    CAS  Article  PubMed  Google Scholar 

  13. De LP, Seta N (2009) The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. BBA-M Basis Dis 1792(9):841–843

    Article  Google Scholar 

  14. Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44(3):631–653. https://doi.org/10.1021/jf950394r

    CAS  Article  Google Scholar 

  15. Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr 62(6):678–682

    Google Scholar 

  16. Hartley BS, Hanlon N, Jackson RJ, Rangarajan M (2000) Glucose isomerase: insights into protein engineering for increased thermostability. BBA Protein Struct Mol Enzym 1543(2):294–335. https://doi.org/10.1016/S0167-4838(00)00246-6

    CAS  Article  Google Scholar 

  17. Helanto M, Kiviharju K, Granström T, Leisola M, Nyyssölä A (2009) Biotechnological production of L-ribose from L-arabinose. Appl Microbiol Biotechnol 83(1):77–83. https://doi.org/10.1007/s00253-008-1855-x

    CAS  Article  PubMed  Google Scholar 

  18. Hu X, Shi Y, Zhang P, Miao M, Zhang T, Jiang B (2016) D-mannose: properties, production, and applications: an overview. Compr Rev Food Sci F 15(4):773–785. https://doi.org/10.1111/1541-4337.12211

    Article  Google Scholar 

  19. Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9(2):174–180. https://doi.org/10.1016/j.cbpa.2005.02.001

    CAS  Article  PubMed  Google Scholar 

  20. Izumori K (2006) Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol 124(4):717–722. https://doi.org/10.1016/j.jbiotec.2006.04.016

    CAS  Article  PubMed  Google Scholar 

  21. Johnston K, Clements A, Venkataramani RN, Trievel RC, Marmorstein R (2000) Coexpression of proteins in bacteria using T7-based expression plasmids: expression of heteromeric cell-cycle and transcriptional regulatory complexes. Protein Expr Purif 20(3):435–443. https://doi.org/10.1006/prep.2000.1313

    CAS  Article  PubMed  Google Scholar 

  22. Kim KR, Seo ES, Oh DK (2014) L-ribose production from L-arabinose by immobilized recombinant Eescherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans. Appl Biochem Biotechnol 172(1):275–288. https://doi.org/10.1007/s12010-013-0547-x

    CAS  Article  PubMed  Google Scholar 

  23. Kim NH, Kim HJ, Kang DI, Jeong KW, Lee JK, Kim Y, Oh DK (2008) Conversion shift of D-fructose to D-psicose for enzyme-catalyzed epimerization by addition of borate. Appl Environ Microbiol 74(10):3008–3013. https://doi.org/10.1128/AEM.00249-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Korneeva OS, Cheremushkina IV, Glushchenko AS, Mikhaĭlova NA, Baturo AP, Romanenko ÉE, Zlygostev SA (2012) Prebiotic properties of mannose and its effect on specific resistance. Zhurnal Mikrobiol Epidemiol Immunobiol 5:67–70

    Google Scholar 

  25. Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191. https://doi.org/10.1093/protein/13.3.179

    CAS  Article  PubMed  Google Scholar 

  26. Kwon HJ, Yeom SJ, Park CS, Oh DK (2010) Substrate specificity of a recombinant D-lyxose isomerase from Providencia stuartii for monosaccharides. J Biosci Bioeng 110(1):26–31. https://doi.org/10.1016/j.jbiosc.2009.12.011

    CAS  Article  PubMed  Google Scholar 

  27. Lee SJ, Sang JL, Lee YJ, Kim SB, Kim SK, Lee DW (2012) Homologous alkalophilic and acidophilic L-arabinose isomerases reveal region-specific contributions to the pH dependence of activity and stability. Appl Environ Microbiol 78(24):8813–8816. https://doi.org/10.1128/AEM.02114-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Lim BC, Kim HJ, Oh DK (2007) High production of D-tagatose by the addition of boric acid. Biotechnol Prog 23(4):824–828. https://doi.org/10.1002/bp070056y

    CAS  Article  PubMed  Google Scholar 

  29. Long NVD, Le TH, Jinil K, Juweon L, Yoonmo K (2009) Separation of D-psicose and D-fructose using simulated moving bed chromatography. J Sep Sci 32(11):1987–1995. https://doi.org/10.1002/jssc.200800753

    Article  Google Scholar 

  30. Marles-Wright J, Lewis RJ (2011) The structure of a D-lyxose isomerase from the σB regulon of Bacillus subtilis. Proteins 79(6):2015–2019. https://doi.org/10.1002/prot.23028

    CAS  Article  PubMed  Google Scholar 

  31. Mishra DK, Hwang JS (2013) Selective hydrogenation of D-mannose to D-mannitol using NiO-modified TiO 2 (NiO-TiO 2 ) supported ruthenium catalyst. Appl Catal A Gen 453(6):13–19. https://doi.org/10.1016/j.apcata.2012.11.042

    CAS  Article  Google Scholar 

  32. Morita M, E S, K Y, Sakai T, Natori T, Koezuka Y, H F, K A (1996) Practical total synthesis of (2S,3S,4R)-1-O-(α-D-galactopyranosyl)-N-hexacosanoyl-2-amino-1,3,4-octadecanetriol, the antitumorial and immunostimulatory α-galactosylcer-amide, KRN7000. Biosci Biotechnol Biochem 60(2):288–292. https://doi.org/10.1271/bbb.60.288

    CAS  Article  PubMed  Google Scholar 

  33. Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11(3):88–95. https://doi.org/10.1016/0167-7799(93)90057-G

    CAS  Article  PubMed  Google Scholar 

  34. Okano K (2009) Synthesis and pharmaceutical application of L-ribose. Tetrahedron 65(10):1937–1949. https://doi.org/10.1016/j.tet.2008.11.047

    CAS  Article  Google Scholar 

  35. Park CS, Kwon HJ, Yeom SJ, Oh DK (2010a) Mannose production from fructose by free and immobilized D-lyxose isomerases from Providencia stuartii. Biotechnol Lett 32(9):1305–1309. https://doi.org/10.1007/s10529-010-0300-2

    CAS  Article  PubMed  Google Scholar 

  36. Park CS, Kim JE, Choi JG, Oh DK (2011) Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol 92(6):1187–1196. https://doi.org/10.1007/s00253-011-3403-3

    CAS  Article  PubMed  Google Scholar 

  37. Park CS, Yeom SJ, Lim YR, Kim YS, Oh DK (2010b) Substrate specificity of a recombinant D-lyxose isomerase from Serratia proteamaculans that produces D-lyxose and D-mannose. Lett in. Appl Microbiol 51(3):343–350. https://doi.org/10.1111/j.1472-765X.2010.02903.x

    CAS  Article  Google Scholar 

  38. Patel DH, Wi SG, Lee SG, Lee DS, Song YH, Bae HJ (2011) Substrate specificity of the Bacillus licheniformis lyxose isomerase YdaE and its application in in vitro catalysis for bioproduction of lyxose and glucose by two-step isomerization. Appl Environ Microbiol 77(10):3343–3350. https://doi.org/10.1128/AEM.02693-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Patel MJ, Akhani RC, Patel AT, Dedania SR, Patel DH (2017) A single and two step isomerization process for D-tagatose and L-ribose bioproduction using L-arabinose isomerase and D-lyxose isomerase. Enzym Microb Technol 97:27–33. https://doi.org/10.1016/j.enzmictec.2016.11.001

    CAS  Article  Google Scholar 

  40. Shen SC, Wu JSB (2010) Maillard browning in ethanolic solution. J Food Sci 69(4):FCT273–FCT279

    Google Scholar 

  41. Swenson CA, Barker R (1971) Proportion of keto and aldehydo forms in solutions of sugars and sugar phosphates. Biochemistry 10(16):3151–3154. https://doi.org/10.1021/bi00792a026

    CAS  Article  PubMed  Google Scholar 

  42. Van LS, Park CS, Yeom SJ, Adamscioaba MA, Oh DK, Jia Z (2010) Structure-based annotation of a novel sugar isomerase from the pathogenic E. coli O157:H7. J Mol Biol 401(5):866–881

    Article  Google Scholar 

  43. Vuksan V, Jenkins DJ, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, Brighenti F, Josse R, Leiter LA, Bruce-Thompson C (1999) Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care 22(6):913–919. https://doi.org/10.2337/diacare.22.6.913

    CAS  Article  PubMed  Google Scholar 

  44. Wagner N, Bosshart A, Failmezger J, Bechtold M, Panke S (2015) A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis. Angew Chem Int Edit 54(14):4182–4186. https://doi.org/10.1002/anie.201411279

    CAS  Article  Google Scholar 

  45. Xu W, Zhang W, Zhang T, Jiang B, Mu W (2016a) L-rhamnose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 100(7):1–8

    Article  Google Scholar 

  46. Xu Z, Li S, Feng X, Liang J, Xu H (2014) L-arabinose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 98(21):8869–8878. https://doi.org/10.1007/s00253-014-6073-0

    CAS  Article  PubMed  Google Scholar 

  47. Xu Z, Sha Y, Liu C, Li S, Liang J, Zhou J, Xu H (2016b) L-ribose isomerase and mannose-6-phosphate isomerase: properties and applications for l-ribose production. Appl Microbiol Biotechnol 100(21):9003–9011. https://doi.org/10.1007/s00253-016-7834-8

    CAS  Article  PubMed  Google Scholar 

  48. Takagi Y, Nakai K, Tsuchiya T, Takeuchi T (1996) A 5′-(Trifluoromethyl)anthracycline glycoside: synthesis of antitumor-active 7-O-(2,6-Dideoxy-6,6,6-trifluoro-α-l-lyxo-hexopyranosyl)adriamycinone. J Med Chem 39(8):1582–1588

    CAS  Article  PubMed  Google Scholar 

  49. Yeom SJ, Ji JH, Kim NH, Park CS, Oh DK (2009) Substrate specificity of a mannose-6-phosphate isomerase from Bacillus subtilis and its application in the production of L-ribose. Appl Environ Microbiol 75(14):4705–4710. https://doi.org/10.1128/AEM.00310-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Yu L, Zhang W, Zhang T, Jiang B, Mu W (2016) Efficient biotransformation of D-fructose to D-mannose by a thermostable D-lyxose isomerase from Thermosediminibacter oceani. Process Biochem 51(12):2026–2033. https://doi.org/10.1016/j.procbio.2016.08.023

    CAS  Article  Google Scholar 

  51. Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, Konkel JE, Nakatsukasa H, Zanvit P, Goldberg N, Chen Q, Sun L, Chen ZJ, Chen W (2017a) D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med 23(9):1036–1045. https://doi.org/10.1038/nm.4375

    CAS  Article  PubMed  Google Scholar 

  52. Zhang W, Fang D, Xing Q, Zhou L, Jiang B, Mu W (2013) Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704. PLoS One 8(4):e62987. https://doi.org/10.1371/journal.pone.0062987

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang W, Li H, Zhang T, Jiang B, Zhou L, Mu W (2015) Characterization of a D-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity. J Mol Catal B Enzym 120:68–74. https://doi.org/10.1016/j.molcatb.2015.05.018

    CAS  Article  Google Scholar 

  54. Zhang W, Yu S, Zhang T, Jiang B, Mu W (2016) Recent advances in D-allulose: physiological functionalities, applications, and biological production. Trends Food Sci Technol 54:127–137. https://doi.org/10.1016/j.tifs.2016.06.004

    Article  Google Scholar 

  55. Zhang W, Zhang T, Jiang B, Mu W (2017b) Enzymatic approaches to rare sugar production. Biotechnol Adv 35(2):267–274. https://doi.org/10.1016/j.biotechadv.2017.01.004

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the NSFC Project (no. 21276001), the 863 Project (no. 2013AA102102), the Support Project of Jiangsu Province (no. BK20130001 and 2015-SWYY-009), and the project of Outstanding Scientific and Technological Innovation Group of Jiangsu Province (Jing Wu).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanmeng Mu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 487 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, Z., Zhang, W. et al. d-lyxose isomerase and its application for functional sugar production. Appl Microbiol Biotechnol 102, 2051–2062 (2018). https://doi.org/10.1007/s00253-018-8746-6

Download citation

Keywords

  • d-lyxose isomerase
  • d-lyxose
  • Substrate specificity
  • Functional sugar