Skip to main content

What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments

Abstract

Polyhydroxyalkanoates (PHA) are storage polymers accumulated by numerous prokaryotes in form of intracellular granules. Native PHA granules are formed by amorphous polymer which reveals considerably higher elasticity and flexibility as compared to crystalline pure PHA polymers. The fact that bacteria store PHA in amorphous state has great biological consequences. It is not clear which mechanisms protect amorphous polymer in native granules from transition into thermodynamically favorable crystalline state. Here, we demonstrate that exposition of bacterial cells to particular stressors induces granules aggregation, which is the first but not sufficient condition for PHA crystallization. Crystallization of the polymer occurs only when the stressed bacterial cells are subsequently dried. The fact that both granules aggregation and cell drying must occur to induce crystallization of PHA indicates that both previously suggested hypotheses about mechanisms of stabilization of amorphous state of native PHA are valid and, in fact, both effects participate synergistically. It seems that the amorphous state of the polymer is stabilized kinetically by the low rate of crystallization in limited volume in small PHA granules and, moreover, water present in PHA granules seems to function as plasticizer protecting the polymer from crystallization, as confirmed experimentally for the first time by the present work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arrondo JLR, Muga A, Castresana J, Goni FM (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared-spectroscopy. Prog Biophys Mol Biol 59(1):23–56. https://doi.org/10.1016/0079-6107(93)90006-6

    CAS  Article  PubMed  Google Scholar 

  2. Bair HE, Johnson GE, Anderson EW, Matsuoka S (1981) Non equilibrium annealing behavior of poly(vinyl acetate): phase diagram, thermal and crystallization behavior. Polym Eng Sci 21:930–935. https://doi.org/10.1002/pen.760211410

    CAS  Article  Google Scholar 

  3. Beeby M, Cho M, Stubbe JA, Jensen GJ (2012) Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha. J Bacteriol 194(5):1092–1099. https://doi.org/10.1128/JB.06125-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bonthrone KM, Clauss J, Horowitz DM, Hunter BK, Sanders JKM (1992) The biological and physical-chemistry of Polyhydroxyalkanoates as seen by NMR-spectroscopy. FEMS Microbiol Lett 103(2-4):269–277. https://doi.org/10.1111/j.1574-6968.1992.tb05848.x

    CAS  Article  Google Scholar 

  5. Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:26612. https://doi.org/10.1038/srep26612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved Ftir spectra. Biopolymers 25(3):469–487. https://doi.org/10.1002/bip.360250307

    CAS  Article  PubMed  Google Scholar 

  7. Ceccorulli G, Pizzoli M, Scandola M (1992) Plasticization of bacterial poly(3-Hydroxybutyrate). Macromolecules 25:3304–3306. https://doi.org/10.1021/ma00038a045

    CAS  Article  Google Scholar 

  8. Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460. https://doi.org/10.1016/j.polymertesting.2003.09.005

    CAS  Article  Google Scholar 

  9. De Koning GJM, Lemstra PJ (1992) The amorphous state of bacterial poly[(R)-3-hydroxyalkanoate] in vivo. Polymer 33:3292–3294. https://doi.org/10.1016/0032-3861(92)90249-V

    Article  Google Scholar 

  10. Goormaghtigh E, Cabiaux V, Ruysschaert JM (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem 193(2):409–420. https://doi.org/10.1111/j.1432-1033.1990.tb19354.x

    CAS  Article  PubMed  Google Scholar 

  11. Hu Y, Zhang J, Sato H, Noda I, Ozaki Y (2007) Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer 48:4777–4785. https://doi.org/10.1016/j.polymer.2007.06.016

    CAS  Article  Google Scholar 

  12. Jendrossek D (2007) Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol 74(6):1186–1196. https://doi.org/10.1007/s00253-007-0860-9

    CAS  Article  PubMed  Google Scholar 

  13. Kadouri D, Jurchevitch E, Okon Y (2003) Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69(6):3244–3250. https://doi.org/10.1128/AEM.69.6.3244-3250.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Kim J, Kim YJ, Choi SY, Lee SY, Kim KJ (2017a) Crystal structure of Ralstonia eutropha polyhydroxyalkanoate synthase C-terminal domain and reaction mechanisms. Biotechnol J 12(1):1600648. https://doi.org/10.1002/biot.201600648

    CAS  Article  Google Scholar 

  15. Kim YJ, Choi SY, Kim J, Jin KS, Lee SY, Kim KJ (2017b) Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme. Biotechnol J 12(1):1600649. https://doi.org/10.1002/biot.201600649

    CAS  Article  Google Scholar 

  16. Koskimäki JJ, Kajula M, Hokkanen J, Ihantola EL, Kim JH, Hautajärvi H, Hankala E, Suokas M, Pohjanen J, Podolich O, Kozyrovska N, Turpeinen A, Pääkkönen M, Mattila S, Campbell BC, Pirttilä AM (2016) Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat Chem Biol 12(5):332–338. https://doi.org/10.1038/nchembio.2043

    CAS  Article  PubMed  Google Scholar 

  17. Lauzier C, Marchessault RH, Smith P, Chanzy H (1992a) Structural study of isolated poly(β-hydroxybutyrate) granules. Polymer 33:823–827. https://doi.org/10.1016/0032-3861(92)90343-U

    CAS  Article  Google Scholar 

  18. Lauzier C, Revol JF, Marchessault RH (1992b) Topotactic crystallization of isolated poly(beta-hydroxybutyrate) granules from Alcaligenes eutrophus. FEMS Microbiol Lett 103:299–310. https://doi.org/10.1111/j.1574-6968.1992.tb05851.x

    CAS  Article  Google Scholar 

  19. Mas J, Pedros-Alio C, Guerrero R (1985) Mathematical-model for determining the effects of intracytoplasmic inclusions on volume and density of microorganisms. J Bacteriol 164:749–756

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nowroth V, Marquar L, Jendrossek D (2016) Low temperature-induced viable but not culturable state of Ralstonia eutropha and its relationship to accumulated polyhydroxybutyrate. FEMS Microbiol Lett 363(23):fnw249. https://doi.org/10.1093/femsle/fnw249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Obruca S, Snajdar O, Svoboda Z, Marova I (2013) Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol 29(12):2417–2428. https://doi.org/10.1007/s11274-013-1410-5

    CAS  Article  PubMed  Google Scholar 

  22. Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I (2016a) Accumulation of Poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS One 11:e0157778. https://doi.org/10.1371/journal.pone.0157778

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Obruca S, Sedlacek P, Mravec F, Samek O, Marova I (2016b) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376. https://doi.org/10.1007/s00253-015-7162-4

    CAS  Article  PubMed  Google Scholar 

  24. Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubanova K, Milerova M, Marova I (2017) The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol 39:68–80. https://doi.org/10.1016/j.nbt.2017.07.008

    CAS  Article  Google Scholar 

  25. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36(3):856–870. https://doi.org/10.1016/j.biotechadv.2017.12.006

    CAS  Article  PubMed  Google Scholar 

  26. Pavez P, Castillo JL, Gonzalez C, Martinez M (2009) Poly-β-hydroxyalkanoate exert a protective effect against carbon starvation and frozen conditions in Sphingopyxis chilensis. Curr Microbiol 59:636–640. https://doi.org/10.1007/s00284-009-9485-9

    CAS  Article  PubMed  Google Scholar 

  27. Porter M, Yu J (2011a) Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy. J Microbiol Methods 87(1):49–55. https://doi.org/10.1016/j.mimet.2011.07.009

    CAS  Article  PubMed  Google Scholar 

  28. Porter M, Yu J (2011b) Crystallization kinetics of poly(3-hydroxybutyrate) granules in different environmental conditions. J Biomater Nanobiotechnol 2:301–310. https://doi.org/10.4236/jbnb.2011.23037

    CAS  Article  Google Scholar 

  29. Sedlacek P, Slaninova E, Koller M, Nebesarova J, Marova I, Krzyzanek V, Obruca S (2018) PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol. https://doi.org/10.1016/j.nbt.2018.10.005

  30. Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, Hesko O, Kucera D, Marova I, Obruca S (2018) Light scattering on PHA granules protects bacterial cells against the harmful effects of UV. Appl Microbiol Biotechnol 102(4):1923–1931. https://doi.org/10.1007/s00253-018-8760-8

    CAS  Article  PubMed  Google Scholar 

  31. Soto G, Setten L, Lisi C, Maurelis C, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Exremophiles 16:455–462. https://doi.org/10.1007/s00792-012-0445-0

    CAS  Article  Google Scholar 

  32. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    CAS  Article  Google Scholar 

  33. Susi H, Byler DM (1986) Resolution-enhanced fourier transform infrared. Methods Enzymol 130:290–311. https://doi.org/10.1016/0076-6879(86)30015-6

    CAS  Article  PubMed  Google Scholar 

  34. Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74(4):1057–1063. https://doi.org/10.1128/AEM.02342-07

    CAS  Article  Google Scholar 

  35. Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Factories 8:47. https://doi.org/10.1186/1475-2859-8-47

    CAS  Article  Google Scholar 

  36. Wieczorek R, Pries A, Steinbuchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177:2425–2435. https://doi.org/10.1128/jb.177.9.2425-2435.1995

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Wittenborn EC, Jost M, Wei Y, Stubbe J, Drennan CL (2016) Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. J Biol Chem 291:25264–25277. https://doi.org/10.1074/jbc.M116.756833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. York GM, Lupberger J, Tian J, Lawrence AG, Stubbe JA, Sinskey AJ (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185(13):3788–3794. https://doi.org/10.1128/JB.185.13.3788-3794.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao YH, Li HM, Qin LF, Wang HH, Chen GQ (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276:34–41. https://doi.org/10.1111/j.1574-6968.2007.00904.x

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the program for large research infrastructures of the Ministry of Education, Youth and Sports within the project “National Infrastructure for Biological and Medicinal Imaging (Czech-Biolmaging LM2015062).

Funding

This study was funded by the projects “Materials Research Centre at FCH BUT - Sustainability and Development” No. LO1211 and “National Infrastructure for Biological and Medicinal Imaging” (Czech-Biolmaging LM2015062) of the Ministry of Education, Youth and Sports of the Czech Republic and by the project GP19-20697S of the Czech Science Foundation (GACR).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stanislav Obruca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 7510 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sedlacek, P., Slaninova, E., Enev, V. et al. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biotechnol 103, 1905–1917 (2019). https://doi.org/10.1007/s00253-018-09584-z

Download citation

Keywords

  • Polyhydroxyalkanoates crystallization
  • Intracellular granules
  • Stress conditions