Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 6, pp 2449–2467 | Cite as

Oxetane-containing metabolites: origin, structures, and biological activities

  • Vera Vil
  • Alexander O. Terent’ev
  • Abed Al Aziz Al Quntar
  • Tatyana A. Gloriozova
  • Nick Savidov
  • Valery M. DembitskyEmail author
Mini-Review

Abstract

Cyclobutanes containing one oxygen atom in a molecule are called oxetane-containing compounds (OCC). More than 600 different OCC are found in nature; they are produced by microorganisms, and also found in marine invertebrates and algae. The greatest number of them is found in plants belonging to the genus Taxus. Oxetanes are high-energy oxygen-containing non-aromatic heterocycles that are of great interest as new potential pharmacophores with a significant spectrum of biological activities. The biological activity of OCC that is produced by bacteria and Actinomycetes demonstrates antineoplastic, antiviral (arbovirus), and antifungal activity with confidence an angiogenesis stimulator, respiratory analeptic, and antiallergic activity dominate with confidence from 81 to 99%.

Keywords

Oxetane Cyclobutane Microorganisms Fungi Algae Invertebrates Plant Activities 

Notes

Acknowledgements

The work was performed in the framework of the Program for Basic Research of Russian State Academies of Sciences (RFBR; Vera Vil’s student project no. 18-33-00651).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abe M (2008) Recent progress regarding regio-, site-, and stereoselective formation of oxetanes in Paterno-Buchi reactions. J Chin Chem Soc 55:479–486Google Scholar
  2. Alabugin IV (2016) Stereoelectronic effects: the Bridge between structure and reactivity. John Wiley & Sons Ltd, HobokenGoogle Scholar
  3. Alabugin IV, Bresch S, Gomes GP (2015) Orbital hybridization: a key electronic factor in control of structure and reactivity. J Phys Org Chem 28:147–162Google Scholar
  4. Alcaide B, Almendros P (2011) Four-membered ring systems. In: Gribble GW, Joule JA (eds) Progress in heterocyclic chemistry Vol. 22, Chp 4, 85-107. Elsevier, Oxford, UKGoogle Scholar
  5. Anjaneyulu AS, Rao VL (2003) Ceriopsins F and G, diterpenoids from Ceriops decandra. Phytochemistry 62(8):1207-1211Google Scholar
  6. Appendino G (1995) The phytochemistry of the yew tree. Nat Prod Rep 12:349–360Google Scholar
  7. Asai A, Hasegawa A, Ochiai K, Yamashit Y (2000) Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK mediated cell cycle regulation, produced by Streptomyces sp. J Antibiot 53(1):81–83Google Scholar
  8. Bao S, Deng Z, Fu H, Proksch P, Lin W (2005) Diterpenes and disulfides from the marine mangrove plant Bruguiera sexangula var. rhynchopetala. Helv Chim Acta 88:2757–2763Google Scholar
  9. Barlow RB (1979) Structure-activity relationships. Trends Pharmacol Sci 1(1):109–111Google Scholar
  10. Bezhentsev VM, Druzhilovskiy DS, Ivanov SM, Filimonov DA, Sastry GN, Poroikov VV (2017) Web resources for discovery and development of new medicines. Pharm Chem J 51(2):91–99Google Scholar
  11. Bohlmann F, Dhar AK, Jakupovic J, King RM, Robinson H (1981a) Two sesquiterpene lactones with an additional propiolactone ring from Disynaphia halimifolia. Phytochemistry 20:1077–1080Google Scholar
  12. Bohlmann F, Zdero C, King RM, Robinson H (1981b) Germacranolides, a guaianolide with a β-lactone ring and further constituents from Grazielia species. Phytochemistry 20:1069–1075Google Scholar
  13. Bombardelli E, Bonati A, Danieli B, Gabetta B, Martinelli EM, Mustich G (1975) The structure of quimbeline, a new bisindole alkaloid from Voacanga chalotiana. Experientia 31(2):139–140Google Scholar
  14. Brandi A, Cicchi S, Cordero FM (2008) Novel syntheses of azetidines and azetidinones. Chem Rev 108:3988–4035Google Scholar
  15. Bull JA, Croft RA, Davis OA, Doran R, Morgan KF (2016) Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem Rev 116(19):12150–12233Google Scholar
  16. Burkhard JA, Wuitschik G, Rogers-Evans M, Müller K, Carreira EM (2010) Oxetanes as versatile elements in drug discovery and synthesis. Angew Chem Int Ed 49:9052–9067Google Scholar
  17. Chagas FO, Pupo MT (2018) Chemical interaction of endophytic fungi and actinobacteria from Lychnophora ericoides in co-cultures. Microbiol Res 212-213:10–16Google Scholar
  18. Carreira EM, Fessard TC (2014) Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem Rev 114:8257–8322Google Scholar
  19. Centko RM, Ramón-García S, Taylor T, Patrick BO, Thompson CJ, Miao VP, Andersen RJ (2012) Ramariolides A–D, antimycobacterial butenolides isolated from the mushroom Ramaria cystidiophora. J Nat Prod 75(12):2178–2182Google Scholar
  20. Chen HD, Yang SP, He XF, Ai J, Liu ZK, Liu HB, Geng MY, Yue JM (2010) Trigochinins A–C: three new daphnane-type diterpenes from Trigonostemon chinensis. Org Lett 12(6):1168–1171Google Scholar
  21. Cheng SY, Wang SK, Wen ZH, Dai CF, Duh CY (2009) Three new eudesmanoids from the Formosan soft coral Nephthea erecta. J Asian Nat Prod Res 11(11):967–973Google Scholar
  22. Cheng YY, Chen H, He HP, Zhang Y, Li SF, Tang GH, Guo LL, Yang W, Zhu F, Zheng YT, Li SL, Hao XJ (2013) Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum. Phytochemistry 96:360–369Google Scholar
  23. Collado IG, Macias FA, Massanet GM, Molinillo JMG, Rodriguez-Luis F (1987) Terpene synthesis. 1. Chemical transformation of deacylsubexpinnatin into the natural oxetane lactone subexpinnatin C. J Organomet Chem 52(15):3323–3326Google Scholar
  24. Coxon DT, Price KR, Stothers JB, Stoessl A (1979) Cyclodehydroisolubimin: a new tricyclic sesquiterpene from potato tubers inoculated with Phytophthora infestans. J Chem Soc Chem Commun 1:348–349Google Scholar
  25. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5(1):75–97Google Scholar
  26. Da Machado FLS, Kaiser CR, Costa SS, Gestinari LM, Soares AR (2010) Biological activity of the secondary metabolite from marine algae of the genus Laurencia. Rev Bras Pharm 20(3): 441-452Google Scholar
  27. Dai J, Fishback JA, Zhou YD, Nagle DG (2006) Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells. J Nat Prod 69(12):1715–1720Google Scholar
  28. Das B, Rao SP (1996) Naturally occurring oxetane-type taxoids. Indian J Chem 35B:883–888Google Scholar
  29. Davis OA, Bull JA (2015) Recent advances in the synthesis of 2-substituted oxetanes. Synthesis 26:1–6Google Scholar
  30. De Gutierrez AN, Bardon A, Catalan CAN, Gedris TB, Herz W (2001) Sesquiterpene lactones and other constituents of Disynaphia multicrenulata from Argentina. Biochem Syst Ecol 29:633–647Google Scholar
  31. De La Torre MC, Pascual C, Franco BR, Savona PG, Perales A (1986) Neo-clerodane diterpenoids from Teucrium salviastrum. Phytochemistry 25:1397–1403Google Scholar
  32. Dembitsky VM (2008) Bioactive cyclobutane-containing alkaloids. J Nat Med (Tokyo) 62(1):1–33Google Scholar
  33. Dembitsky VM (2014) Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 21(12):1559–1581Google Scholar
  34. Dembitsky VM, Gloriozova TA (2017) Naturally occurring boron containing compounds: structures and biological activities. J Nat Prod Res 3(2):147–152Google Scholar
  35. Dembitsky VM, Gloriozova TA, VV Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7(6):571–589Google Scholar
  36. Dembitsky VM, Al Quntar AAA, Srebnik M (2011) Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 111(1):209-237Google Scholar
  37. Dembitsky VM, Savidov N, Gloriozova TA (2018) Sulphur containing steroids: Structures and biological activities. Vietnam J Chem 56(5):582-540Google Scholar
  38. De Rosa S, De Stefano S, Scarpelli P, Zavodnik N (1988) Terpenes from the red alga Sphaerococcus coronopifolius of the North Adriatic Sea. Phytochemisrry 27: 1875-1878Google Scholar
  39. Dimick PS, Hoskin JC (1983) Review of apple flavor - state of the art.Crit Rev Food Sci Nutr 18(4):387-409Google Scholar
  40. Dookran D, Maharaj D, Mootoo BS, Ramsewak R, Tinto WF (1994) Briarane and asbestinane diterpenes from Briareum asbestinum. Tetrahedron 50:1983–1992Google Scholar
  41. Duan KT, Li ZHYX, Yuan QX, Wang WX, Li J, Ping H, Feng CT, Liu JK (2018) Vibralactone derivatives containing γ,δ,ε-lactone cores from cultures of the basidiomycete Boreostereum vibrans. Fitoterapia 128:7–11Google Scholar
  42. Du Toit A (2016) A fungal quorum-sensing system. Nat Rev Microbiol 14:404–405Google Scholar
  43. Eguren L, Perales A, Fayos J, Rodriguez B, Savona G, Piozzi F (1982) New neoclerodane diterpenoid containing an oxetane ring isolated from Teucrium chamaedrys. X-ray structure determination. J Organomet Chem 47(21):4157–4160Google Scholar
  44. Elliger CA, Benson M, Haddon WF, Lundin RE, Waiss AC Jr, Wong RY (1989) Petuniasterones. Part 2. Novel ergostane-type steroids from Petunia hybridavilm. (solanaceae). J Chem Soc, Perkin Trans 1 1:143–149Google Scholar
  45. Elliger CA, Benson M, Haddon WF, Lundin RE, Waiss AC Jr, Wong RY (1988) Three new types of ergostanoids with unusual functionalities were isolated from leaves and stems of Petunia hybrids. J Chem Soc, Perkin Trans 1 1:711–717Google Scholar
  46. Evidente A, Iacobellisa NS, Scopa A, Surico G (1990) Isolation of β-phenyllactic acid related compounds from Pseudomonas syringae. Phytochemistry 29(5):1491–1149Google Scholar
  47. Fan YY, Gao XH, Yue JM (2016) Attractive natural products with strained cyclopropane and/or cyclobutane ring systems. Sci China Chem 59(9):1126–1141Google Scholar
  48. Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, Pogodin PV, Poroikov VV (2018) Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biom Chem Res Method 1(1):e00004Google Scholar
  49. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457Google Scholar
  50. Fukuyama Y, Nakaoka M, Yamamoto T, Takahashi H, Minami H (2006) Degraded and oxetane-bearing limonoids from the roots of Melia azedarach. Chem Pharm Bull (Tokyo) 54(8):1219–1222Google Scholar
  51. Gao K, Ma DW, Cheng Y, Tian XR, Lu YY, Du XY, Tang HF, Chen JZ (2015) Three new dimers and two monomers of phenolic amides from the fruits of Lycium barbarum and their antioxidant activities. J Agric Food Chem 63:1067–1075Google Scholar
  52. Georgopoulou K, Smirlis D, Bisti S, Xingi E, Skaltsounis L, Soteriadou K (2007) In vitro activity of 10-deacetylbaccatin III against Leishmania donovani promastigotes and intracellular amastigotes. Planta Med 73(10):1081–1088Google Scholar
  53. Grafe U, Fleck WF, Mbllmann U, Schade W, Tonew E, Wiesner J (1988) Diffusomycin, a new macrocyclic polyene lactame antibiotic from Streptomyces albus inhibiting bacterial growth only partly. Int Symp Chem Nat Prod PA 167:245Google Scholar
  54. Greenspan MD, Yudkovitz JB, Lo CYL (1987) Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proceed Nat Acad Sci USA 84:7488–7492Google Scholar
  55. Gryglewski RJ, Dembínska-Kieć A, Korbut R (1978) A possible role of thromboxane A2 (TXA2) and prostacyclin (PGI2) in circulation. Acta Biol Med Ger 37(5-6):715–723Google Scholar
  56. Guo S, Tang YP, Duan JA, Su SL, Ding AW (2009) Two new terpenoids from fruits of Ziziphus jujuba. Chin Chem Lett 20(2):197–200Google Scholar
  57. Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 72(8):2994–2998Google Scholar
  58. Han Q, Zhang J, Lu Y, Wu Y, Zheng Q, Sun H (2004) A novel cytotoxic oxetane ent-kauranoid from Isodon japonicus. Planta Med 70(6):581–584Google Scholar
  59. Hirota A, Ando Y, Monma S, Hirota H (1994) FCRR-toxin, a novel phytotoxin from Fusarium oxysporum f. sp. radicis-lycopersici. Biosci Biotechnol Biochem 58(10):1931–1932Google Scholar
  60. Howat S, Park B, Oh S, Jin YW, Lee EK, Loake GJ (2014) Paclitaxel: biosynthesis, production and future prospects. New Biotechnol 31(3):242–245Google Scholar
  61. Huang JM, Yokoyama R, Yang CS, Fukuyama Y (2000) Merrilactone A, a novel neurotrophic sesquiterpene dilactone from Illicium merrillianum. Tetrahedron Lett 41:6111–6114Google Scholar
  62. Irie T, Izawa M, Kurosawa E (1970) Laureatin and isolaureatin, constituents of Laurencia nipponica Yamada. Tetrahedron 26:851–870Google Scholar
  63. Jabeen B, Riaz N, Saleem M, Naveed MA, Ahmed M, Tahir MN, Pescitellic G, Ashraf M, Ejaz SA, Ahmed I, Jabbar A (2013) Isolation and characterization of limonoids from Kigelia africana. Z Naturforsch 68B:1041–1048Google Scholar
  64. Jeong SY, Jun do Y, Kim YH, Min BS, Min BK, Woo MH (2011) Monoterpenoids from the aerial parts of Aruncus dioicus var. kamtschaticus and their antioxidant and cytotoxic activities. Bioorg Med Chem Lett 21(11):3252–3256Google Scholar
  65. Ji NY, Wang BG (2014) Nonhalogenated organic molecules from Laurencia algae. Phytochem Rev 13:653–670Google Scholar
  66. Jiang MY, Wang F, Yang XL, Fang LZ, Dong ZJ, Zhu HJ, Liu JK (2008) Derivatives of vibralactone from cultures of the Basidiomycete Boreostereum vibrans. Chem Pharm Bull 56(9): 1286–1288Google Scholar
  67. Jones RJ, Hawkins RE, Eatock MM, Ferry DR, Eskens FA, Wilke H, Evans TR (2008) A phase II open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma. Cancer Chemother Pharmacol 61(3):435–441Google Scholar
  68. Kingston DGI, Jagtap PG, Yuan H, Samala L (2002) The chemistry of taxol and related taxoids. In: Herz W, Falk H, Kirby GW (eds) Prog Chem Org Nat Prod, vol 84. Springer, ViennaGoogle Scholar
  69. Kitahara M, Asano M, Naganawa H, Maeda K, Hamada M, Aoyagi T, Umezawa H, Iitaka Y, Nakamura H (1987) Valilactone, an inhibitor of esterase, produced by actinomycetes. J Antibiot (Tokyo) 40(11):1647–1650Google Scholar
  70. Ko HH, Yang SZ, Lin CN (2001) Artocarpol F, a phenolic compound with a novel skeleton, isolated from Artocarpus rigida. Tetrahedron Lett 42:5269–5270Google Scholar
  71. Kokh DB, Amaral M, Bomke J, Grädler U, Musil D, Buchstaller HP, Dreyer MK, Frech M, Lowinski M, Vallee F, Bianciotto M, Rak A, Wade RC (2018) Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J Chem Theory Comput 14(7):3859–3869Google Scholar
  72. Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) Laureacetal C, an unusual secochamigrane sesquiterpene from the red alga Laurencia nipponica Yamada. Chem Lett 12:29–32Google Scholar
  73. Lagunin AA, Goel RK, Gawande DY, Priynka P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV (2014) Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 31(11):1585–1611Google Scholar
  74. Le TC, Yang I, Yoon YJ, Nam SJ, Fenical W (2016) Ansalactams B–D illustrate further biosynthetic plasticity within the ansamycin pathway. Org Lett 18(9):2256–2259Google Scholar
  75. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718Google Scholar
  76. Lentini R, Martín NM, Forlin M, Belmonte L, Fontana J, Cornella M, Martini L, Tamburini S, Bentley WE, Jousson O, Mansy SS (2017) Two-way chemical communication between artificial and natural cells. ACS Cent Sci 3(2):117–123Google Scholar
  77. Leśniak S, Lewkowski J, Kudelska W, Zając A (2008) Thietanes and thietes: monocyclic. Comprehen Heterocycl Chem III 7:389–428Google Scholar
  78. Li C, Lee D, Graf TN, Phifer SS, Nakanishi Y, Burgess JP, Riswan S, Setyowati FM, Saribi AM, Soejarto DD, Farnsworth NR, Falkinham JO 3rd, Kroll DJ, Kinghorn AD, Wani MC, Oberlies NH (2005) A hexacyclic ent-trachylobane diterpenoid possessing an oxetane ring from Mitrephora glabra. Org Lett 7(25):5709–5712Google Scholar
  79. Li GH, Li L, Duan M, Zhang KQ (2006) The chemical constituents of the fungus Stereum sp. Chem Biodivers 3(2):210–216Google Scholar
  80. Liu JQ, Peng XR, Li XY, Li TZ, Zhang WM, Shi L, Han J, Qiu MH (2013) Norfriedelins A-C with acetylcholinesterase inhibitory activity from acerola tree (Malpighia emarginata). Org Lett 15(7):1580–1583Google Scholar
  81. Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 99(22):14446–1444651Google Scholar
  82. Mahmoud AA, Ahmed AA, Iinuma M, Tanaka T (1998) Further monoterpene 5-methyl-coumarins and an acetophenone derivative from Ethulia conyzoides. Phytochemistry 48(3):543–546Google Scholar
  83. Malakov PY, Papanov GY, Mollov NM (1978) Montanin-D, a new furanoid diterpene of clerodane type from Teucrium montanum L. Z Naturforsch 33B:1142–1144Google Scholar
  84. Manam RR, Macherla VR, Tsueng G, Dring CW, Weiss J, Neuteboom STC, Lam KS, Potts BC (2009) Antiprotealide is a natural product. J Nat Prod 72(2):295–297Google Scholar
  85. Massanet GM, Collado IG, Macías FA, Bohlmann F, Jakupovic J (1983) Structural determination of clementein, a new guaianolide isolated from Centaurea clementei. Tetrahedron Lett 24(15):1641–1642Google Scholar
  86. Mayol L, Piccialli V, Sica D (1987) Spongiolactone, an unusual β-lactone diterpene isovalerate based on a new rearranged spongiane skeleton from Spongionella gracilis. Tetrahedron Lett 28(31):3601–3604Google Scholar
  87. Meng S, Tang GL, Pan HX (2018) Enzymatic formation of oxygen-containing heterocycles in natural product biosynthesis. Chem Bio Chem 19(19):2002–2022Google Scholar
  88. Mondol MAM, Tareq FS, Kim JH, Lee MA, Lee HS, Lee YJ, Lee JS, Shin HJ (2011) Cyclic ether-containing macrolactins, antimicrobial 24-membered isomeric macrolactones from a marine Bacillus sp. J Nat Prod 74(12):2582–2587Google Scholar
  89. Morris BD, Smyth RR, Foster SP, Hoffmann MP, Roelofs WL, Franke S, Francke W (2005) Vittatalactone, a β-lactone from the striped cucumber beetle, Acalymma vittatum. J Nat Prod 68(1):26–30Google Scholar
  90. Mutoh M, Nakada N, Matsukuma S, Ohshima S, Yoshinari K, Watanabe J, Arisawa M (1994) Panclicins, novel pancreatic lipase inhibitors. I. Taxonomy, fermentation, isolation and biological activity. J Antibiot (Tokyo) 47(12):1369-1375Google Scholar
  91. Murakami S, Harada S, Kojima F, Kinoshita N, Takahashi Y, Hamada M, Takeuchi T, Aoyagi T (1995a) Belactins A and B, new serine carboxypeptidase inhibitors produced by Actinomycete. I. Taxonomy, production, isolation and biological activities. J Enzym Inhib 9:8755–5093Google Scholar
  92. Murakami S, Takahashi Y, Naganawa H, Takeuchi T, Aoyagi T (1995b) Belactins A and B, new serine carboxypeptidase inhibitors produced by Actinomycete. II. Physico-chemical properties, structure determinations and enzymatic inhibitory activities compared with other β-lactone containing inhibitors. J Enzym Inhib 9(4):277–284Google Scholar
  93. Nadia S, Azeana S, Liew S, Litaudon M, Issam AM, Wahab HA, Awang K (2018) Pahangine A and B, two new oxetane containing neolignans from the barks of Beilschmiedia glabra Kosterm (Lauraceae). Phytochem Lett 25:22–26Google Scholar
  94. Ni L, Ma J, Li CJ, Li L, Guo JM, Yuan SP, Hou Q, Guo Y, Zhang DM (2015) Novel rearranged and highly oxygenated abietane diterpenoids from the leaves of Tripterygium wilfordii. Tetrahedron Lett 56(10):1239–1243Google Scholar
  95. Nonaka Y, Ohtaki H, Ohtsuka E, Kocha T, Fukuda T, Takeuchi T (1995) Effects of ebelactone B, a lipase inhibitor, on intestinal fat absorption in the rat. J Enzym Inhib 10:57–63Google Scholar
  96. Okada K, Enomoto S, Morimoto K, Kazuno T (1962) The isolation of a new bile sterol, 3α,7α, 12α-trihydroxy-24,27-epoxycoprostance, from Sting-ray bile. J Biochem (Tokyo) 51(6):441–442Google Scholar
  97. Omura S, Murata M, Imamura N, Iwai Y, Tanaka H, Furusaki A, Matsumoto H (1984) Oxetin, a new antimetabolite from an actinomycete. Fermentation, isolation, structure and biological activity. J Antibiot (Tokyo) 37(11):1324–1332Google Scholar
  98. Ostrowska H, Kalinowska J, Chabielska E, Stankiewicz A, Kruszewski K, Buczko W (2005) Ebelactone B, an inhibitor of extracellular cathepsin A-type enzyme, suppresses platelet aggregation ex vivo in renovascular hypertensive rats. J Cardiovasc Pharmacol 45(4):348–353Google Scholar
  99. Otani T, Yoshida KI, Kubota H, Kawai S, Ito S, Hori H, Ishiyama T, Oki T (2000) Novel triene-beta-lactone antibiotics, oxazolomycin derivative and its isomer, produced by Streptomyces sp. KSM-2690. J Antibiot (Tokyo) 53(12):1397-1400Google Scholar
  100. Pereira NFG, Walmir Silva Garcez CAC, de Siqueira JM (2003) Novel santalane sesquiterpenoids from the stem bark of Duguetia glabriuscula – Annonaceae. Quim Nova 26(4): 512-516Google Scholar
  101. Penn J, Biddle JR, Mantle RG, Bilton JN, Sheppard RN (1992) Pennigritrem, a naturally-occurring penitrem A analogue with novel cyclisation in the diterpenoid moiety. J Chem Soc, Perkin Trans 10:23-26Google Scholar
  102. Prablek MA (2013) Synthesis and activity of oxetane analogs to molecules in bacterial quorum sensing. In: Princeton University. Senior Theses, USAGoogle Scholar
  103. Pullaiah KC, Surapaneni RK, Rao CB, Albizati KF, Sullivan BW, Faulkner DJ, He CH, Clardy J (1985) Dictyoxetane, a novel diterpene from the brown alga Dictyota dichotoma from the Indian Ocean. J Organomet Chem 50:3665–3666Google Scholar
  104. Rachid S, Huo L, Herrmann J, Stadler M, Köpcke B, Bitzer J (2011) Müller R. Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors. Chembiochem 12(6):922–931Google Scholar
  105. Ren F, Chen S, Zhang Y, Zhu S, Xiao J, Liu X, Su R, Che Y (2018) Hawaiienols A–D, highly oxygenated p-terphenyls from an insect-associated fungus, Paraconiothyrium hawaiiense. J Nat Prod 81(8): 1752–1759Google Scholar
  106. Savidov N, Gloriozova TA, Poroikov VV, Dembitsky VM (2018) Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: origin and biological activities. Steroids 140:114–124Google Scholar
  107. Selvamani S, Balamurugan S (2015) Phytochemical screening and GC-MS analysis of acetone leaf extract of Acalypha indica (Linn.). Int J Res Stud Biosci 3(5):229–232Google Scholar
  108. Sergeiko A, Poroikov VV, Hanuš LO, Dembitsky VM (2008) Cyclobutane-containing alkaloids: origin, synthesis, and biological activities. The Open Med Chem J 2:26–31Google Scholar
  109. Shen YC, Hsu SM, Lin YS, Cheng KC, Chien CT, Chou CH, Cheng YB (2005) New bicyclic taxane diterpenoids from Taxus sumatrana. Chem Pharm Bull 53(7):808–810Google Scholar
  110. Shen YC, Wang SS, Chien CT, Khalil AT (2008) Tasumatrols U–Z, taxane diterpene esters from Taxus sumatrana. J Nat Prod 71(4):576–800Google Scholar
  111. Shen YC, Wang SS, Pan YL, Lo KL, Chakraborty R, Chien CT, Kuo YH, Lin YC (2002) New taxane diterpenoids from the leaves and twigs of Taxus sumatrana. J Nat Prod 65(12):1848–1852Google Scholar
  112. Shiu LL, Chen WC, Kuo YH (1999) Five new cis-himachalane-type sesquiterpenes from the heartwood of Juniperus chinensis var. tsukusiensis. Chem Pharm Bull 47(4):557–560Google Scholar
  113. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395Google Scholar
  114. Smith LW, Culvenor CCJ (1984) Grantianine and grantaline, alkaloids of Crotalaria virgulata subsp. grantiana. Phytochemistry 23:473–474Google Scholar
  115. Smoum R, Rubinstein A, Dembitsky VM, Srebnik M (2012) Boron containing compounds as protease inhibitors. Chem Rev 112(7):4156–4220Google Scholar
  116. Subban S, Singh S, Subramani R, Johnpaul M, Chelliah J (2017) Fungal 7-epi-10-deacetyltaxol produced by an endophytic Pestalotiopsis microspora induces apoptosis in human hepatocellular carcinoma cell line (HepG2). BMC Complem Alternat Med 17:504–516Google Scholar
  117. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci U S A 100(Suppl 2):14549–14554Google Scholar
  118. Tonew E, Tonew M, Gräfe U, Zöpel P (1992) On the antiviral activity of diffusomycin (oxazolomycin). Acta Virol 36(2):166-172Google Scholar
  119. Terent’ev AO, Platonov MM, Levitsky DO, Dembitsky VM (2011) Organosilicon and organogermanium peroxides: synthesis and reactions. Russ Chem Rev 80:807–828Google Scholar
  120. Terent’ev AO, Borisov DA, Vil’ VA, Dembitsky VM (2014) Synthesis of five- and six-membered cyclic organic peroxides: key transformations into peroxide ring-retaining products. Beilstein J Org Chem 10:34–114Google Scholar
  121. Tomoda H, Ohbayashi N, Morikawa Y (2004) Binding site for fungal β-lactone hymeglusin on cytosolic 3- hydroxy-3-methylglutaryl coenzyme A synthase. Biochim Biophys Acta 1636:22–28Google Scholar
  122. Uyeo S, Irie H, Harada H (1967) The structure of stenine, a new alkaloid occurring in Stemona tuberosa. Chem Pharm Bull 15:768–770Google Scholar
  123. Vander Velde DG, Georg GI, Gollapudi SR, Jampani HB, Liang XZ, Mitscher LA, Ye QM (1994) Wallifoliol, a taxol congener with a novel carbon skeleton, from Himalayan Taxus wallichiana. J Nat Prod 57(6):862–867Google Scholar
  124. Vikram A, Prithiviraj B, Kushalappa AC (2004) Use of volatile metabolite profiles to discriminate fungal diseases of Cortland and Empire Apples. J Plant Pathol 86(3):215–225Google Scholar
  125. Vil VA, Gloriozova TA, Poroikov VV, Terent’ev AO, Savidov N, Dembitsky VM (2018) Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol 102(18):7657–7667Google Scholar
  126. Vil VA, Yaremenko IA, Ilovaisky AI, Terent’ev AO (2017) Peroxides with anthelmintic, antiprotozoal, fungicidal and antiviral bioactivity: properties, synthesis and reactions. Molecules 22(11):1881 doi.org/10.3390/molecules22111881 Google Scholar
  127. Walker K., Croteau R. (1999) Taxol Biosynthesis. In: Romeo J.T. (eds) Phytochemicals in human health protection, nutrition, and plant defense. Recent advances in phytochemistry (proceedings of the Phytochemical Society of North America), vol 33. Springer, Boston, MAGoogle Scholar
  128. Wang JS, Zhang Y, Wang X-B, Kong L-Y (2012) Aphanalides A–H, ring A- secolimonoids from the fruits of Aphanamixis polystachya. Tetrahedron 68(21):3963–3971Google Scholar
  129. Wang M, Cornett B, Nettles J, Liotta DC, Snyder JP (2000) The oxetane ring in taxol. J Organomet Chem 65:1059–1068Google Scholar
  130. Wang YF, Shi QW, Dong M, Kiyota H, Gu YG, Cong B (2011) Natural taxanes: developments since 1828. Chem Rev 111(12):7652–7709Google Scholar
  131. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327Google Scholar
  132. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346Google Scholar
  133. Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot (Tokyo) 40(8):1081–1085Google Scholar
  134. Willenbring D, Tantillo DJ (2008) Mechanistic possibilities for oxetane formation in the biosynthesis of taxol’s D ring. Russ J Gen Chem 78(4):723–731Google Scholar
  135. Wongsuk T, Pumeesat P, Luplertlop N (2016) Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol 56(5):440–447Google Scholar
  136. Wright M, Byrd J, Gao Y, Stubblefield J, Park H, Dunlap N (2014) Isolation and structural clarification of triterpenes from Cyclocarya paliurus: cyclocaric acid A and B. Planta Med 80:PD19Google Scholar
  137. Wuitschik G (2008) Oxetanes in drug discovery. In: Dissertation. Zürich, SwitzerlandGoogle Scholar
  138. Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Müller K (2010) Oxetanes in drug discovery: structural and synthetic insights. J Med Chem 53(8):3227–3246Google Scholar
  139. Xie WD, Zhang Q, Li PL, Ji ZJ (2005) Two triterpenoids and other constituents from Petasites tricholobus. Phytochemistry 66:2340–2345Google Scholar
  140. Xu JB, Yue JM (2014) Recent studies on the chemical constituents of Trigonostemon plants. Org Chem Front 1:1225–1252Google Scholar
  141. Yamada K, Takada S, Nakamura S, Hirata Y (1968) The structures of anisatin and neoanisatin: toxic sesquiterpenes from Illicium anisatum L. Tetrahedron 24:199–229Google Scholar
  142. Yuan JX, Zeng Y, Zou C, Zhao PJ (2013) Four new β-lactones from the endophytic Streptomyces sp. T1B1. Phytochem Lett 6(4):625–628Google Scholar
  143. Zhao W, Pu JX, Du X (2011) Chemical constituents from the aerial parts of Isodon coetsa and their cytotoxicity. Archiv Pharm Res 34(12) 2007–2014Google Scholar
  144. Zhang Z, Jia Z (1991) Taxanes from Taxus chinensis. Phytochemistry 30:2345–2348Google Scholar
  145. Zhang L, Luo RH, Wang F, Jiang MY, Dong ZJ, Yang LM, Zheng YT, Liu JK (2010) Highly functionalized daphnane diterpenoids from Trigonostemon thyrsoideum. Org Lett 12(1):152–155Google Scholar
  146. Zhang W, Xu L, Yang L, Huang Y, Li S, Shen Y (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123 Fitoterapia 96:146–151Google Scholar
  147. Zhu PF, Dai Z, Wang B, Wei X, Yu HF, Yan ZR, Zhao XD, Liu YP, Luo XD (2017) The anticancer activities phenolic amides from the stem of Lycium barbarum. Nat Prod Bioprospect 7(6):421–431Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vera Vil
    • 1
  • Alexander O. Terent’ev
    • 1
  • Abed Al Aziz Al Quntar
    • 2
  • Tatyana A. Gloriozova
    • 3
  • Nick Savidov
    • 4
  • Valery M. Dembitsky
    • 1
    • 4
    • 5
    Email author
  1. 1.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of Material EngineeringFaculty of Engineering, Al Quds UniversityJerusalemIsrael
  3. 3.Institute of Biomedical ChemistryMoscowRussia
  4. 4.Centre for Applied Research and InnovationLethbridge CollegeLethbridgeCanada
  5. 5.Biochemical LabNational Scientific Center of Marine BiologyVladivostokRussia

Personalised recommendations