Anderson L, Hägglund P, Stoll D, Lo Leggio L, Drakenberg T, Stålbrand H (2008) Kinetics and stereochemistry of the Cellulomonas fimi β-mannanase studied using 1H-NMR. Biocatal Biotransformation 26(1-2):86–95. https://doi.org/10.1080/10242420701788835
CAS
Article
Google Scholar
Asano I, Hamaguchi K, Fujii S, Iino H (2003) In vitro digestibility and fermentation of mannooligosaccharides from coffee mannan. Food Sci Technol Res 9(1):62–66. https://doi.org/10.3136/fstr.9.62
CAS
Article
Google Scholar
Ballou CE (1982) Yeast cell wall and cell surface. The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 335–360. https://doi.org/10.1101/087969180.11B.335
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3
CAS
Article
PubMed
Google Scholar
Britton HTS, Robinson RA (1931) CXCVIII—universal buffer solutions and the dissociation constant of veronal. J Chem Soc 0(0):1456–1462. https://doi.org/10.1039/JR9310001456
CAS
Article
Google Scholar
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180
CAS
Article
PubMed
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database):233–238. https://doi.org/10.1093/nar/gkn663
Article
Google Scholar
Cartmell A, Topakas E, Ducros VMA, Suits MDL, Davies GJ, Gilbert HJ (2008) The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem 283(49):34403–34413. https://doi.org/10.1074/jbc.M804053200
CAS
Article
PubMed
PubMed Central
Google Scholar
Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77(1):237–246. https://doi.org/10.1128/AEM.01761-10
CAS
Article
PubMed
Google Scholar
Couturier M, Roussel A, Rosengren A, Leone P, Stålbrand H, Berrin JG (2013) Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. J Biol Chem 288(20):14624–14635. https://doi.org/10.1074/jbc.M113.459438
CAS
Article
PubMed
PubMed Central
Google Scholar
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35(Web Server):W375–W383. https://doi.org/10.1093/nar/gkm216
Article
PubMed
PubMed Central
Google Scholar
Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216. https://doi.org/10.1080/07388550701775919
CAS
Article
PubMed
Google Scholar
Dias FMV, Vincent F, Pell G, Prates JAM, Centeno MSJ, Tailford LE, Ferreira LMA, Fontes CMGA, Davies GJ, Gilbert HJ (2004) Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem 279(24):25517–25526. https://doi.org/10.1074/jbc.M401647200
CAS
Article
PubMed
Google Scholar
Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325. https://doi.org/10.1006/jmbi.1997.1437
CAS
Article
PubMed
Google Scholar
Grinna LS, Tschopp JF (1989) Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast 5(2):107–115. https://doi.org/10.1002/yea.320050206
CAS
Article
PubMed
Google Scholar
Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW (2001) Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem 276(33):31186–31192. https://doi.org/10.1074/jbc.M010290200
CAS
Article
PubMed
Google Scholar
Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68(8):1311–1325. https://doi.org/10.1007/s00018-011-0648-z
CAS
Article
PubMed
Google Scholar
Inoue T, Murashima K, Azuma JI, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43(3):235–242. https://doi.org/10.1016/S0022-1910(96)00097-2
CAS
Article
PubMed
Google Scholar
Jahn M, Stoll D, Warren RAJ, Szabó L, Singh P, Gilbert HJ, Ducros VM, Davies GJ, Withers SG (2003) Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chem Commun (Camb) (12):1327–1329. https://doi.org/10.1039/b302380j
Jue CK, Lipke PN (1985) Determination of reducing sugars in the nanomole range with tetrazolium blue. J Biochem Biophys Methods 11(2-3):109–115. https://doi.org/10.1016/0165-022X(85)90046-6
CAS
Article
PubMed
Google Scholar
Katsimpouras C, Dimarogona M, Petropoulos P, Christakopoulos P, Topakas E (2016) A thermostable GH26 endo-β-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol 100(19):8385–8397. https://doi.org/10.1007/s00253-016-7609-2
CAS
Article
PubMed
Google Scholar
Kawaguchi K, Senoura T, Ito S, Taira T, Ito H, Wasaki J, Ito S (2014) The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis. Arch Microbiol 196(1):17–23. https://doi.org/10.1007/s00203-013-0938-y
CAS
Article
PubMed
Google Scholar
Le Nours J, Anderson L, Stoll D, Stålbrand H, Lo Leggio L (2005) The structure and characterization of a modular endo-β-1,4-mannanase from Cellulomonas fimi. Biochemistry 44:12700–12708. https://doi.org/10.1021/Bi050779v
Article
PubMed
Google Scholar
Liepman AH, Nairn CJ, Willats WGT, Sorensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143(4):1881–1893. https://doi.org/10.1104/pp.106.093989
CAS
Article
PubMed
PubMed Central
Google Scholar
McCleary BV (1979) Enzymic hydrolysis, fine structure, and gelling interaction of legume-seed D-galacto-D-mannans. Carbohydr Res 71(1):205–230. https://doi.org/10.1016/S0008-6215(00)86071-1
CAS
Article
Google Scholar
Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178. https://doi.org/10.1007/s00253-008-1423-4
CAS
Article
PubMed
Google Scholar
Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32(7):777–784. https://doi.org/10.1016/S0965-1748(01)00160-6
CAS
Article
PubMed
Google Scholar
Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31(6):838–850. https://doi.org/10.1016/j.biotechadv.2013.04.005
CAS
Article
PubMed
Google Scholar
Parsiegla G, Belaich A, Belaich JP, Haser R (2002) Crystal structure of the cellulase Cel9M enlightens structure/function relationships of the variable catalytic modules in glycoside hydrolases. Biochemistry 41(37):11134–11142. https://doi.org/10.1021/bi025816m
CAS
Article
PubMed
Google Scholar
Petkowicz d O, CL RF, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44(2):107–112. https://doi.org/10.1016/S0144-8617(00)00212-5
CAS
Article
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084
CAS
Article
PubMed
Google Scholar
Pongsapipatana N, Damrongteerapap P, Chantorn S, Sintuprapa W, Keawsompong S, Nitisinprasert S (2016) Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters. Enzym Microb Technol 89:39–51. https://doi.org/10.1016/j.enzmictec.2016.03.005
CAS
Article
Google Scholar
Sabini E, Schubert H, Murshudov G, Wilson KS, Siika-Aho M, Penttilä M (2000) The three-dimensional structure of a Trichoderma reesei β-mannanase from glycoside hydrolase family 5. Acta Crystallogr D Biol Crystallogr 56(1):3–13. https://doi.org/10.1107/S0907444999013943
CAS
Article
PubMed
Google Scholar
Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins Struct Funct Genet 23(3):318–326. https://doi.org/10.1002/prot.340230306
Article
PubMed
Google Scholar
Smith DL Jr, Nagy TR, Wilson LS, Dong S, Barnes S, Allison DB (2010) The effect of mannan oligosaccharide supplementation on body weight gain and fat accrual in C57Bl/6J mice. Obesity 18(5):995–999. https://doi.org/10.1038/oby.2009.308
CAS
Article
PubMed
Google Scholar
Todaka N, Moriya S, Saita K, Hondo T, Kiuchi I, Takasu H, Ohkuma M, Piero C, Hayashizaki Y, Kudo T (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59(3):592–599. https://doi.org/10.1111/j.1574-6941.2006.00237.x
CAS
Article
PubMed
Google Scholar
Tsukagoshi H, Nakamura A, Ishida T, Otagiri M, Moriya S, Samejima M, Igarashi K, Kitamoto K, Arioka M (2014a) The GH26 β-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: heterologous expression and characterization. Biochem Biophys Res Commun 452(3):520–525. https://doi.org/10.1016/j.bbrc.2014.08.103
CAS
Article
PubMed
Google Scholar
Tsukagoshi H, Nakamura A, Ishida T, Touhara KK, Otagiri M, Moriya S, Samejima M, Igarashi K, Fushinobu S, Kitamoto K, Arioka M (2014b) Structural and biochemical analyses of glycoside hydrolase family 26 β-mannanase from a symbiotic protist of the termite Reticulitermes speratus. J Biol Chem 289(15):10843–10852. https://doi.org/10.1074/jbc.M114.555383
CAS
Article
PubMed
PubMed Central
Google Scholar
Uchima CA, Arioka M (2012) Expression and one-step purification of recombinant proteins using an alternative episomal vector for the expression of N-tagged heterologous proteins in Pichia pastoris. Biosci Biotechnol Biochem 76(2):368–371. https://doi.org/10.1271/bbb.110628
CAS
Article
PubMed
Google Scholar
Zhang Q, Yan X, Zhang L, Tang W (2006) Cloning, sequence analysis, and heterologous expression of a β-mannanase gene from Bacillus subtilis Z-2. Mol Biol 40(3):368–374. https://doi.org/10.1134/S0026893306030034
CAS
Article
Google Scholar