Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2413–2424 | Cite as

Temperature and nutrients as drivers of microbially mediated arsenic oxidation and removal from acid mine drainage

  • Vincent Tardy
  • Corinne Casiot
  • Lidia Fernandez-Rojo
  • Eléonore Resongles
  • Angélique Desoeuvre
  • Catherine Joulian
  • Fabienne Battaglia-Brunet
  • Marina Héry
Environmental biotechnology

Abstract

Microbial oxidation of iron (Fe) and arsenic (As) followed by their co-precipitation leads to the natural attenuation of these elements in As-rich acid mine drainage (AMD). The parameters driving the activity and diversity of bacterial communities responsible for this mitigation remain poorly understood. We conducted batch experiments to investigate the effect of temperature (20 vs 35 °C) and nutrient supply on the rate of Fe and As oxidation and precipitation, the bacterial diversity (high-throughput sequencing of 16S rRNA gene), and the As oxidation potential (quantification of aioA gene) in AMD from the Carnoulès mine (France). In batch incubated at 20 °C, the dominance of iron-oxidizing bacteria related to Gallionella spp. was associated with almost complete iron oxidation (98%). However, negligible As oxidation led to the formation of As(III)-rich precipitates. Incubation at 35 °C and nutrient supply both stimulated As oxidation (71–75%), linked to a higher abundance of aioA gene and the dominance of As-oxidizing bacteria related to Thiomonas spp. As a consequence, As(V)-rich precipitates (70–98% of total As) were produced. Our results highlight strong links between indigenous bacterial community composition and iron and arsenic removal efficiency within AMD and provide new insights for the future development of a biological treatment of As-rich AMD.

Keywords

Acid mine drainage Arsenic and iron oxidation Bacterial community Temperature Nutrient 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8716_MOESM1_ESM.pdf (392 kb)
ESM 1 (PDF 392 kb)

References

  1. Ahoranta SH, Kokko ME, Papirio S, Özkaya B, Puhakka JA (2016) Arsenic removal from acidic solutions with biogenic ferric precipitates. J Hazard Mater 306:124–132.  https://doi.org/10.1016/j.jhazmat.2015.12.012 CrossRefPubMedGoogle Scholar
  2. Asta MP, Ayora C, Román-Ross G, Cama J, Acero P, Gault AG, Charnock JM, Bardelli F (2010) Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem Geol 271(1-2):1–12.  https://doi.org/10.1016/j.chemgeo.2009.12.005 CrossRefGoogle Scholar
  3. Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacquesa MA (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81(4):1257–1266.  https://doi.org/10.1128/AEM.03722-14 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic (III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93(4):656–667.  https://doi.org/10.1046/j.1365-2672.2002.01726.x CrossRefPubMedGoogle Scholar
  5. Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Barrie Johnson D, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89(1):99–108.  https://doi.org/10.1007/s10482-005-9013-2 CrossRefPubMedGoogle Scholar
  6. Bruneel O, Personné JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Flèche A, Grimont PAD (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95(3):492–499.  https://doi.org/10.1046/j.1365-2672.2003.02004.x CrossRefPubMedGoogle Scholar
  7. Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72(1):551–556.  https://doi.org/10.1128/AEM.72.1.551-556.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bryan CG, Marchal M, Battaglia-Brunet F, Kugler V, Lemaitre-Guillier C, Lièvremont D, Bertin PN, Arsène-Ploetze F (2009) Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes. BMC Microbiol 9(1):127.  https://doi.org/10.1186/1471-2180-9-127 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Campbell KM, Kirk Nordstrom D (2014) Arsenic speciation and sorption in natural environments. Rev Mineral Geochem 79:185–216.  https://doi.org/10.1128/9781555817510.ch5 CrossRefGoogle Scholar
  10. Casiot C, Leblanc M, Bruneel O (2003a) Geochemical processes controlling the formation of As-rich waters within a tailings impoundment (Carnoulès, France). Aquat Geochem 9(4):273–290.  https://doi.org/10.1023/B:AQUA.0000028985.07557.39 CrossRefGoogle Scholar
  11. Casiot C, Morin G, Juillot F, Bruneel O, Personné JC, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003b) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37(12):2929–2936.  https://doi.org/10.1016/S0043-1354(03)00080-0 CrossRefPubMedGoogle Scholar
  12. Cheng H, Hu Y, Luo J, Xu B, Zhao J (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165(1-3):13–26.  https://doi.org/10.1016/j.jhazmat.2008.10.070 CrossRefPubMedGoogle Scholar
  13. Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279(1):30–35.  https://doi.org/10.1111/j.1574-6968.2007.00998.x CrossRefPubMedGoogle Scholar
  14. Debiec K, Krzysztoforski J, Uhrynowski W, Sklodowska A, Drewniak L (2017) Kinetics of arsenite oxidation by Sinorhizobium sp. M14 under changing environmental conditions. Int Biodeterior Biodegrad 119:476–485.  https://doi.org/10.1016/j.ibiod.2016.10.049 CrossRefGoogle Scholar
  15. Dopson M, Halinen A-K, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindström EB, Puhakka JA (2006) Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioeng 97(5):1205–1215.  https://doi.org/10.1002/bit.21312 CrossRefGoogle Scholar
  16. Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné JC, Leblanc M, Morin G, Bonnefoy V (2003) Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol 69(10):6165–6173.  https://doi.org/10.1128/AEM.69.10.6165 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Egal M, Casiot C, Morin G, Parmentier M, Bruneel O, Lebrun S, Elbaz-Poulichet F (2009) Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem Geol 265(3-4):432–441.  https://doi.org/10.1016/j.chemgeo.2009.05.008 CrossRefGoogle Scholar
  19. Egal M, Casiot C, Morin G, Elbaz-Poulichet F, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Appl Geochem 25(12):1949–1957.  https://doi.org/10.1016/j.apgeochem.2010.10.012 CrossRefGoogle Scholar
  20. Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T (2013) Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol 4:1–17.  https://doi.org/10.3389/fmicb.2013.00254 CrossRefGoogle Scholar
  21. Fernandez-Rojo L, Héry M, Le pape P, Braungardt C, Desoeuvre A, Torres E, Tardy V, Resongles E, Laroche E, Delpoux S, Joulian C, Battaglia-Brunet F, Boisson J, Grapin G, Morin G, Casiot C (2017) Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD). Water Res 123:594–606.  https://doi.org/10.1016/j.watres.2017.06.059 CrossRefPubMedGoogle Scholar
  22. Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18(8):1267–1278.  https://doi.org/10.1016/S0883-2927(03)00011-8 CrossRefGoogle Scholar
  23. Garcia-Dominguez E, Mumford A, Rhine ED, Paschal A, Young LY (2008) Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiol Ecol 66(2):401–410.  https://doi.org/10.1111/j.1574-6941.2008.00569.x CrossRefPubMedGoogle Scholar
  24. Gonzalez-Toril E, Aguilera A, Souza-Egipsy V, Pamo EL, Espana JS, Amils R (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77(8):2685–2694.  https://doi.org/10.1128/AEM.02459-10 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137(11):2657–2661.  https://doi.org/10.1099/00221287-137-11-2657 CrossRefGoogle Scholar
  26. Hedrich S, Schlomann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157(6):1551–1564.  https://doi.org/10.1099/mic.0.045344-0 CrossRefPubMedGoogle Scholar
  27. Héry M, Casiot C, Resongles E, Gallice Z, Bruneel O, Desoeuvre A, Delpoux S (2014) Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study. Environ Chem 11(5):514–524.  https://doi.org/10.1071/EN13225 CrossRefGoogle Scholar
  28. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Natl Rev Microbiol 8:15–25.  https://doi.org/10.1038/nrmicro2259.Bacterial CrossRefGoogle Scholar
  29. Hug SJ, Leupin OX (2003) Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 37(12):2734–2742.  https://doi.org/10.1021/es026208x CrossRefPubMedGoogle Scholar
  30. Ito A, Miura JI, Ishikawa N, Umita T (2012) Biological oxidation of arsenite in synthetic groundwater using immobilised bacteria. Water Res 46(15):4825–4831.  https://doi.org/10.1016/j.watres.2012.06.013 CrossRefPubMedGoogle Scholar
  31. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1-2):3–14.  https://doi.org/10.1016/j.scitotenv.2004.09.002 CrossRefPubMedGoogle Scholar
  32. Kelly DP, Uchino Y, Huber H, Amils R, Wood AP (2007) Reassessment of the phylogenetic relationships of Thiomonas cuprina. Int J Syst Evol Microbiol 57(11):2720–2724.  https://doi.org/10.1099/ijs.0.65537-0 CrossRefPubMedGoogle Scholar
  33. Kim D-J, Pradhan D, Park K-H, Ahn J-G, Lee S-W (2008) Effect of pH and temperature on iron oxidation by mesophilic mixed iron oxidizing microflora. Mater Trans 49(10):2389–2393.  https://doi.org/10.2320/matertrans.MER2008051 CrossRefGoogle Scholar
  34. Koskella B, Vos M (2015) Adaptation in natural microbial populations. Annu Rev Ecol Evol Syst 46(1):503–522.  https://doi.org/10.1146/annurev-ecolsys-112414-054458 CrossRefGoogle Scholar
  35. Kuang J-L, Huang L-N, Chen L-X, Hua Z-S, Li S-J, Hu M, Li J-T, Shu W-S (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7(5):1038–1050.  https://doi.org/10.1038/ismej.2012.139 CrossRefPubMedGoogle Scholar
  36. Kulichevskaya IS, Kostina LA, Valášková V, Rijpstra WIC, Sinninghe Damsté JS, de Boer W, Dedysh SN (2012) Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 62(Pt 7):1512–1520.  https://doi.org/10.1099/ijs.0.034819-0 CrossRefPubMedGoogle Scholar
  37. Lawes JC, Neilan BA, Brown MV, Clark GF, Johnston EL (2016) Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling 32(1):57–69.  https://doi.org/10.1080/08927014.2015.1126581 CrossRefPubMedGoogle Scholar
  38. Leflaive J, Danger M, Lacroix G, Lyautey E, Oumarou C, Ten-Hage L (2008) Nutrient effects on the genetic and functional diversity of aquatic bacterial communities. FEMS Microbiol Ecol 66(2):379–390.  https://doi.org/10.1111/j.1574-6941.2008.00593.x CrossRefPubMedGoogle Scholar
  39. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235.  https://doi.org/10.1128/AEM.71.12.8228 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lu S, Gischkat S, Reiche M, Akob DM, Hallberg KB, Küsel K (2010) Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 76(24):8174–8183.  https://doi.org/10.1128/AEM.01931-10 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M (2005) An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ Microbiol 7(7):961–968.  https://doi.org/10.1111/j.1462-2920.2005.00767.x CrossRefPubMedGoogle Scholar
  42. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Maillot F, Morin G, Juillot F, Bruneel O, Casiot C, Ona-Nguema G, Wang Y, Lebrun S, Aubry E, Vlaic G, Brown GE (2013) Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: comparison with biotic and abiotic model compounds and implications for As remediation. Geochim Cosmochim Acta 104:310–329.  https://doi.org/10.1016/j.gca.2012.11.016 CrossRefGoogle Scholar
  44. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475.  https://doi.org/10.3389/fmicb.2015.00475 PubMedPubMedCentralGoogle Scholar
  45. Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75(13):4565–4572.  https://doi.org/10.1128/AEM.02792-08 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mitsunobu S, Hamanura N, Kataoka T, Shiraishi F (2013) Arsenic attenuation in geothermal streamwater coupled with biogenic arsenic(III) oxidation. Appl Geochem 35:154–160.  https://doi.org/10.1016/j.apgeochem.2013.04.005 CrossRefGoogle Scholar
  47. Morin G, Juillot F, Casiot C, Bruneel O, Personné JC, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)—iron(III) gels in the carnoulès acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37(9):1705–1712.  https://doi.org/10.1021/es025688p CrossRefPubMedGoogle Scholar
  48. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci U S A 96(7):3455–3462.  https://doi.org/10.1073/pnas.96.7.3455 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Okie JG, Van Horn DJ, Storch D, Barrett JE, Gooseff MN, Kopsova L, Takacs-Vesbach CD (2015) Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc R Soc B Biol Sci 282(1809):20142630.  https://doi.org/10.1098/rspb.2014.2630 CrossRefGoogle Scholar
  50. Paikaray S (2015) Arsenic geochemistry of acid mine drainage. Mine Water Environ 34(2):181–196.  https://doi.org/10.1007/s10230-014-0286-4 CrossRefGoogle Scholar
  51. Palfy P, Vircikova E, Molnar L (1999) Processing of arsenic waste by precipitation and solidification. Waste Manag 19(1):55–59.  https://doi.org/10.1016/S0956-053X(99)00014-8 CrossRefGoogle Scholar
  52. Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic, moderately thermophilic, thiosulfate-oxidizing bacterium. Int J Syst Evol Microbiol 59(9):2171–2175.  https://doi.org/10.1099/ijs.0.007120-0 CrossRefPubMedGoogle Scholar
  53. Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH (2012) Are uncultivated bacteria really uncultivable? Microbes Environ 27(4):356–366.  https://doi.org/10.1264/jsme2.ME12092 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Quéméneur M, Cébron A, Billard P, Battaglia-Brunet F, Garrido F, Leyval C, Joulian C (2010) Population structure and abundance of arsenite-oxidizing bacteria along an arsenic pollution gradient in waters of the upper isle river basin, France. Appl Environ Microbiol 76(13):4566–4570.  https://doi.org/10.1128/AEM.03104-09 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Resongles E, Le Pape P, Fernandez-Rojo L, Morin G, Delpoux S, Brest J, Guo S, Casiot C (2016) Routine determination of inorganic arsenic speciation in precipitates from acid mine drainage using orthophosphoric acid extraction followed by HPLC-ICP-MS. Anal Methods 8(40):7420–7426.  https://doi.org/10.1039/c6ay02084d CrossRefGoogle Scholar
  56. Rodier J (1996) L’analyse de l’eau, eaux résiduaires, eau de mer, 8th Edition. Dénod ParisGoogle Scholar
  57. Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66(1):92–97.  https://doi.org/10.1128/aem.66.1.92-97.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sheng Y, Bibby K, Grettenberger C, Kaley B, Macalady JL, Wang G, Burgos WD (2016) Geochemical and temporal influences on the enrichment of acidophilic iron-oxidizing bacterial communities. Appl Environ Microbiol 82(12):3611–3621.  https://doi.org/10.1128/AEM.00917-16 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sipura J, Haukka K, Helminen H, Lagus A, Suomela J, Sivonen K (2005) Effect of nutrient enrichment on bacterioplankton biomass and community composition in mesocosms in the Archipelago Sea, northern Baltic. J Plankton Res 27(12):1261–1272.  https://doi.org/10.1093/plankt/fbi092 CrossRefGoogle Scholar
  61. Slyemi D, Moinier D, Brochier-Armanet C, Bonnefoy V, Johnson DB (2011) Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3AsT sp. nov. Arch Microbiol 193(6):439–449.  https://doi.org/10.1007/s00203-011-0684-y CrossRefPubMedGoogle Scholar
  62. Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Delpoux S, Fahy A, Javerliat F, Bouchez O, Duran R, Bertin PN, Elbaz-Poulichet F, Lauga B (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and others drivers along an acid mine drainage. FEMS Microbiol Ecol 90(1):247–263.  https://doi.org/10.1111/1574-6941.12394 CrossRefPubMedGoogle Scholar
  63. Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e70401.  https://doi.org/10.1371/journal.pone.0007401 Google Scholar
  64. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Vincent Tardy
    • 1
  • Corinne Casiot
    • 1
  • Lidia Fernandez-Rojo
    • 1
  • Eléonore Resongles
    • 1
  • Angélique Desoeuvre
    • 1
  • Catherine Joulian
    • 2
  • Fabienne Battaglia-Brunet
    • 2
  • Marina Héry
    • 1
  1. 1.HydroSciences Montpellier, University of Montpellier, CNRS, IRDMontpellierFrance
  2. 2.Water, Environment and Ecotechnology Division, Environmental Biogeochemistry and Water Quality UnitBRGMOrléansFrance

Personalised recommendations