Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: beneficiary to victim

Abstract

Domestic wastes, ranging from sewage and sludge to municipal solid waste, are usually treated in bioprocessing systems. These systems are regarded as main conduits for the elevated levels of antibiotic resistance genes (ARGs) observed in the environment. This paper mainly reviews recent studies on the occurrence and dynamics of ARGs in wastewater bio-treatment systems and discusses the ins and outs of ARG dissemination from the perspective of the microbial community. Our analysis shows that concentration of antibiotics through adsorption to microbial aggregates triggers the bacteria to acquire ARGs, which can be facilitated by the presence of mobile genetic elements. Notably, the acquisition and flow of ARGs during the rapid dissemination process is directed towards and for the best interests of the microbial community as a whole, and is influenced by surrounding nutrient levels, toxicant types, and sensitivities of the species in the prevailing antibiotic-stressed conditions. Furthermore, our review argues that predation of ARG-carrying bacteria by bacteriophages does periodically enhance the accessibility of ARGs to bacteria, which indirectly facilitates the recruitment of ARGs into environmental microbial communities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abegglen C, Joss A, McArdell CS, Fink G, Schlusener MP, Ternes TA, Siegrist H (2009) The fate of selected micropollutants in a single-house MBR. Water Res 43(7):2036–2046. 10.1016/j.watres.2009.02.005

    CAS  Article  PubMed  Google Scholar 

  2. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259. 10.1038/nrmicro2312

    CAS  Article  PubMed  Google Scholar 

  3. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14(4):176–182. 10.1016/j.tim.2006.02.006

    CAS  Article  PubMed  Google Scholar 

  4. Baltrus DA (2013) Exploring the costs of horizontal gene transfer. Trends Ecol Evol 28(8):489–495 doi:10.1016/j.tree.2013.04.002

  5. Bjorkman J, Andersson DI (2000) The cost of antibiotic resistance from a bacterial perspective. Drug Resis Updat 3(4):237–245. 10.1054/drup.2000.0147

    CAS  Article  Google Scholar 

  6. Bound JP, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Perspect 113(12):1705–1711. 10.1289/ehp.8315

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brown-Jaque M, Calero-Caceres W, Muniesa M (2015) Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 79:1–7. 10.1016/j.plasmid.2015.01.001

    CAS  Article  PubMed  Google Scholar 

  8. Calero-Caceres W, Muniesa M (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res 95:11–18. 10.1016/j.watres.2016.03.006

    CAS  Article  PubMed  Google Scholar 

  9. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann M-L, Brüssow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6(4):417–424. 10.1016/s1369-5274(03)00086-9

    CAS  Article  PubMed  Google Scholar 

  10. Chen B, Yang Y, Liang X, Yu K, Zhang T, Li X (2013) Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ Sci Technol 47(22):12753–12760. 10.1021/es403818e

    CAS  Article  PubMed  Google Scholar 

  11. Chen B, Yuan K, Chen X, Yang Y, Zhang T, Wang Y, Luan T, Zou S, Li X (2016) Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environ Sci Technol 50(13):6670–6679. 10.1021/acs.est.6b00619

    CAS  Article  PubMed  Google Scholar 

  12. Christgen B, Yang Y, Ahammad SZ, Li B, Rodriquez DC, Zhang T, Graham DW (2015) Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater. Environ Sci Technol 49(4):2577–2584. 10.1021/es505521w

    CAS  Article  PubMed  Google Scholar 

  13. Chua H, Hua FL (1996) Effects of a heavy metal (zinc) on organic adsorption capacity and organic removal in activated sludge. Appl Biochem Biotechnol 57-8:845-849 doi:Doi 10.1007/Bf02941764

  14. Colomer-Lluch M, Calero-Caceres W, Jebri S, Hmaied F, Muniesa M, Jofre J (2014) Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. Environ Int 73:167–175. 10.1016/j.envint.2014.07.003

    CAS  Article  PubMed  Google Scholar 

  15. Colomer-Lluch M, Imamovic L, Jofre J, Muniesa M (2011) Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Ch 55(10):4908–4911. 10.1128/AAC.00535-11

    CAS  Article  Google Scholar 

  16. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337(6099):1228–1231. 10.1126/science.1219385

    CAS  Article  PubMed  Google Scholar 

  17. Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nature Rev Microbiol 15(7):422–434. 10.1038/nrmicro.2017.28

    CAS  Article  Google Scholar 

  18. Czekalski N, Gascon Diez E, Burgmann H (2014) Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J 8(7):1381–1390. 10.1038/ismej.2014.8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461. 10.1038/nature10388

    Article  PubMed  Google Scholar 

  20. Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103. 10.1126/science.1155157

    CAS  Article  PubMed  Google Scholar 

  21. Di Cesare A, Eckert EM, D'Urso S, Bertoni R, Gillan DC, Wattiez R, Corno G (2016) Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 94:208–214. 10.1016/j.watres.2016.02.049

    Article  PubMed  Google Scholar 

  22. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122(3):259–265. 10.1016/j.jhazmat.2005.03.009

    CAS  Article  PubMed  Google Scholar 

  23. Environment Agency (2013) Waste management 2013—England. UK

  24. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509(7502):612–616. 10.1038/nature13377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732. 10.1038/nrmicro1235

    CAS  Article  PubMed  Google Scholar 

  26. Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, Royle J, Brown H, Davis S, Kay P, Boxall AB, Wellington EM (2011) Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME J 5(8):1253–1261. 10.1038/ismej.2011.15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Graham DW, Knapp CW, Christensen BT, McCluskey S, Dolfing J (2016) Appearance of beta-lactam resistance genes in agricultural soils and clinical isolates over the 20(th) century. Sci Rep 6(1):21550. 10.1038/srep21550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Guellil A, Thomas F, Block JC, Bersillon JL, Ginestet P (2001) Transfer of organic matter between wastewater and activated sludge flocs. Water Res 35(1):143-150 doi:Doi 10.1016/S0043-1354(00)00240-2

  29. Guo J, Li J, Chen H, Bond PL, Yuan Z (2017) Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res 123:468–478. 10.1016/j.watres.2017.07.002

    CAS  Article  PubMed  Google Scholar 

  30. Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, Garcia-Tabernero A, Garcia-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaria D, Madella M, Wilson J, Cortes AF, Rosas A (2012) Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99(8):617–626. 10.1007/s00114-012-0942-0

    CAS  Article  PubMed  Google Scholar 

  31. Hu HW, Wang JT, Li J, Shi XZ, Ma YB, Chen D, He JZ (2017) Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environ Sci Technol 51(2):790–800. 10.1021/acs.est.6b03383

    Article  Google Scholar 

  32. Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D (2013) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458-460:267–272. 10.1016/j.scitotenv.2013.04.038

    CAS  Article  PubMed  Google Scholar 

  33. Kümmerer K (2008) Pharmaceuticals in the Environment: sources, fate, effects and risks, 3rd edn. Springer-Verlag Berlin, Heidelberg. 10.1007/978-3-540-74664-5

    Google Scholar 

  34. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40(7):701–710. 10.1016/S0045-6535(99)00439-7

    Article  PubMed  Google Scholar 

  35. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8(1):1–13. 10.1016/j.ecolind.2007.06.002

    CAS  Article  Google Scholar 

  36. Knapp CW, Dolfing J, Ehlert PA, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44(2):580–587. 10.1021/es901221x

    CAS  Article  PubMed  Google Scholar 

  37. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55(1):709–742. 10.1146/annurev.micro.55.1.709

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Lee KW, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA (2014) Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J 8(4):894–907. 10.1038/ismej.2013.194

    CAS  Article  PubMed  Google Scholar 

  39. Li LG, Xia Y, Zhang T (2017) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J 11(3):651–662. 10.1038/ismej.2016.155

    CAS  Article  PubMed  Google Scholar 

  40. Li W, Shi Y, Gao L, Liu J, Cai Y (2013) Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci Total Environ 445-446:306–313. 10.1016/j.scitotenv.2012.12.050

    CAS  Article  PubMed  Google Scholar 

  41. Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40(3):1042–1048. 10.1021/es0516211

    CAS  Article  PubMed  Google Scholar 

  42. Luczkiewicz A, Jankowska K, Fudala-Ksiazek S, Olanczuk-Neyman K (2010) Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res 44(17):5089–5097. 10.1016/j.watres.2010.08.007

    CAS  Article  PubMed  Google Scholar 

  43. Mao D, Luo Y, Mathieu J, Wang Q, Feng L, Mu Q, Feng C, Alvarez PJ (2014) Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environ Sci Technol 48(1):71–78. 10.1021/es404280v

    CAS  Article  PubMed  Google Scholar 

  44. Marx C, Gunther N, Schubert S, Oertel R, Ahnert M, Krebs P, Kuehn V (2015) Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters. Sci Total Environ 538:779–788. 10.1016/j.scitotenv.2015.08.112

    CAS  Article  PubMed  Google Scholar 

  45. Miao XS, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol 38(13):3533–3541. 10.1021/es030653q

    CAS  Article  PubMed  Google Scholar 

  46. Miao Y, Liao R, Zhang XX, Wang Y, Wang Z, Shi P, Liu B, Li A (2015) Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater. Water Res 76:43–52. 10.1016/j.watres.2015.02.042

    CAS  Article  PubMed  Google Scholar 

  47. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995. 10.1016/j.watres.2012.11.027

    CAS  Article  PubMed  Google Scholar 

  48. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986. 10.1126/science.1211037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Park C, Zhang J (2012) High expression hampers horizontal gene transfer. Genome biology and evolution 4(4):523–532. 10.1093/gbe/evs030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Pehrsson EC, Tsukayama P, Patel S, Mejia-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G (2016) Interconnected microbiomes and resistomes in low-income human habitats. Nature 533(7602):212–216. 10.1038/nature17672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Ratcliff WC, Denison RF (2011) Microbiology. Alternative actions for antibiotics. Science 332(6029):547–548. 10.1126/science.1205970

    CAS  Article  PubMed  Google Scholar 

  52. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7(11):828–836. 10.1038/nrmicro2235

    CAS  Article  PubMed  Google Scholar 

  53. Rysz M, Mansfield WR, Fortner JD, Alvarez PJ (2013) Tetracycline resistance gene maintenance under varying bacterial growth rate, substrate and oxygen availability, and tetracycline concentration. Environ Sci Technol 47(13):6995–7001. 10.1021/es3035329

    CAS  Article  PubMed  Google Scholar 

  54. Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers Microbiol 3:399. 10.3389/fmicb.2012.00399

    Article  Google Scholar 

  55. Shapiro OH, Kushmaro A (2011) Bacteriophage ecology in environmental biotechnology processes. Curr Opin Biotech 22(3):449–455. 10.1016/j.copbio.2011.01.012

    CAS  Article  PubMed  Google Scholar 

  56. Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4(3):327–336. 10.1038/ismej.2009.118

    Article  PubMed  Google Scholar 

  57. Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8(9):1510–1514. 10.1111/j.1462-2920.2006.01091.x

    CAS  Article  PubMed  Google Scholar 

  58. Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, HJ X, Zhu YG (2015) Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol 49(12):7356–7363. 10.1021/acs.est.5b01012

    Article  Google Scholar 

  59. Sun M, Ye M, Schwab AP, Li X, Wan J, Wei Z, Wu J, Friman VP, Liu K, Tian D, Liu M, Li H, Hu F, Jiang X (2016) Human migration activities drive the fluctuation of ARGs: case study of landfills in Nanjing, eastern China. J Hazard Mater 315:93–101. 10.1016/j.jhazmat.2016.04.077

    CAS  Article  PubMed  Google Scholar 

  60. Szczepanowski R, Linke B, Krahn I, Gartemann KH, Gutzkow T, Eichler W, Puhler A, Schluter A (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155(Pt 7):2306–2319. 10.1099/mic.0.028233-0

    CAS  Article  PubMed  Google Scholar 

  61. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45(6):1320–1328. 10.4319/lo.2000.45.6.1320

    Article  Google Scholar 

  62. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14(8):742–750. 10.1016/s1473-3099(14)70780-7

    Article  PubMed  Google Scholar 

  63. Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13(2):155–165. 10.1016/s1473-3099(12)70317-1

    CAS  Article  PubMed  Google Scholar 

  64. Withey S, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages—potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18. 10.1016/j.scitotenv.2004.09.021

    CAS  Article  PubMed  Google Scholar 

  65. Wu D, Chen G, Zhang X, Yang K, Xie B (2017) Change in microbial community in landfill refuse contaminated with antibiotics facilitates denitrification more than the increase in ARG over long-term. Sci Rep 7:41230. 10.1038/srep41230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Wu D, Huang Z, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49(7):4122–4128. 10.1021/es506081z

    CAS  Article  PubMed  Google Scholar 

  67. Wu Q, Liu WT (2009) Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. Water Res 43(4):1101–1109. 10.1016/j.watres.2008.11.039

    CAS  Article  PubMed  Google Scholar 

  68. Yang Y, Li B, Zou S, Fang HH, Zhang T (2014) Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res 62:97–106. 10.1016/j.watres.2014.05.019

    CAS  Article  PubMed  Google Scholar 

  69. Yu P, Mathieu J, GW L, Gabiatti N, Alvarez PJ (2017) Control of antibiotic-resistant bacteria in activated sludge using polyvalent phages in conjunction with a production host. Environ Sci Technol Lett 4(4):137–142. 10.1021/acs.estlett.7b00045

    CAS  Article  Google Scholar 

  70. Yu Z, He P, Shao L, Zhang H, Lu F (2016) Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: a preliminary insight into the role of landfill age. Water Res 106:583–592. 10.1016/j.watres.2016.10.042

    CAS  Article  PubMed  Google Scholar 

  71. Zhang Y, Geissen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161. 10.1016/j.chemosphere.2008.07.086

    CAS  Article  PubMed  Google Scholar 

  72. Zhou LJ, Ying GG, Liu S, Zhao JL, Yang B, Chen ZF, Lai HJ (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452-453:365–376. 10.1016/j.scitotenv.2013.03.010

    CAS  Article  PubMed  Google Scholar 

  73. Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, Chen YS, Zhang T, Gillings MR, JQ S (2017) Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol 2:16270. 10.1038/nmicrobiol.2016.270

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (21577038,31370510) and East China Normal University: Outstanding doctoral dissertation cultivation plan of action (PY2015034). J.D. acknowledges an international exchange grant from the Royal Society (Grant IE131283) for work on the treatment of landfill leachate. D.W. acknowledges the support from Distinguished Young PhD student Fellowship granted by Shanghai Tongji Gao-Tingyao Environmental Science & Technology Development Foundation (STGEF2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There is no ethical or legal conflict involved in this article.

Consent for publication

The manuscript has not been published elsewhere and all authors have seen the manuscript and approved to submit to your journal with mutual consent.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Dolfing, J. & Xie, B. Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: beneficiary to victim. Appl Microbiol Biotechnol 102, 597–604 (2018). https://doi.org/10.1007/s00253-017-8665-y

Download citation

Keywords

  • Domestic wastes
  • Antibiotic resistance genes
  • Waste bio-treatment
  • Antibiotic resistance dissemination