Abstract
Type IV pilus (T4P) is widespread in bacteria, yet its biogenesis mechanism and functionality is only partially elucidated in a limited number of bacterial species. Here, by using strain OH11 as the model organism, we reported the identification of 26 T4P structural or functional component (SFC) proteins in the Gram-negative Lysobacter enzymogenes, which is a biocontrol agent potentially exploiting T4P-mediated twitching motility for antifungal activity. Twenty such SFC coding genes were individually knocked-out in-frame to create a T4P SFC deletion library. By using combined phenotypic and genetic approaches, we found that 14 such SFCs, which were expressed from four operons, were essential for twitching motility. These SFCs included the minor pilins (PilEi, PilXi, PilVi, and FimTi), the anti-retraction protein PilY1i, the platform protein PilC, the extension/extraction ATPases (PilB, PilT, and PilU), and the PilMNOPQ complex. Among these, mutation of pilT or pilU caused a hyper piliation, while the remaining 12 SFCs were indispensable for pilus formation. Ten (FimTi, PilY1i, PilB, PilT, PilU, and the PilMNOPQ complex) of the 14 SFC proteins, as well as PilA, were further shown to play a key role in L. enzymogenes biofilm formation. Overall, our results provide the first report to dissect the genetic basis of T4P biogenesis and its role in biofilm formation in L. enzymogenes in detail, which can serve as an alternative platform for studying T4P biogenesis and its antifungal function.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alm RA, Hallinan JP, Watson AA, Mattick JS (1996) Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 22(1):161–173. https://doi.org/10.1111/j.1365-2958.1996.tb02665.x
Berry JL, Phelan MM, Collins RF, Adomavicius T, Tønjum T, Frye SA, Bird L, Owens R, Ford RC, Lian LY, Derrick JP (2012) Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog 8:e1002923. https://doi.org/10.1371/journal.ppat.1002923
Black WP, Wang L, Jing X, Saldaña RC, Li F, Scharf BE, Schubot FD, Yang Z (2017) The type IV pilus assembly ATPase PilB functions as a signaling protein to regulate exopolysaccharide production in Myxococcus xanthus. Sci Rep 7(1):7263. https://doi.org/10.1038/s41598-017-07594-x
Bohn YS, Brandes G, Rakhimova E, Horatzek S, Salunkhe P, Munder A, van Barneveld A, Jordan D, Bredenbruch F, Riedel K, EberI L, Pø J, Bjarnsholt T, Moser C, Hoiby N, Tummler B, Wiehlmann L (2009) Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection. Mol Microbiol 71(3):730–747. https://doi.org/10.1111/j.1365-2958.2008.06559.x
Bradley DE (1972) A study of pili on Pseudomonas aeruginosa. Genet Res Camb 19(01):39–51. https://doi.org/10.1017/S0016672300014257
Bradley DE (1980) A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26(2):146–154. https://doi.org/10.1139/m80-022
Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66(1):493–520. https://doi.org/10.1146/annurev-micro-092611-150055
Chang YW, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ (2016) Architecture of the type IVa pilus machine. Science 351(6278):aad2001. https://doi.org/10.1126/science.aad2001
Chen I, Dubnau D (2003) DNA transport during transformation. Front Biosci 8(6):s544–s556. https://doi.org/10.2741/1047
Chiang P, Habash M, Burrows LL (2005) Disparate subcellular localization patterns of Pseudomonas aeruginosa type IV pilus ATPases involved in twitching motility. J Bacteriol 187(3):829–839. https://doi.org/10.1128/JB.187.3.829-839.2005
Chiang P, Sampaleanu LM, Ayers M, Pahuta M, Howell PL, Burrows LL (2008) Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology 154(1):114–126. https://doi.org/10.1099/mic.0.2007/011320-0
Christensen P, Cook FD (1978) Lysobacter, a new genus of nonhiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28(3):367–393. https://doi.org/10.1099/00207713-28-3-367
de Bruijn I, Cheng X, Jager VD, Exposite RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM (2015) Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 16(1):991. https://doi.org/10.1186/s12864-015-2191-z
Dunger G, LIontop E, Guzzo CR, Farah CS (2016) The Xanthomonas type IV pilus. Curr Opin Microbiol 30:88–97. https://doi.org/10.1016/j.mib.2016.01.007
Friedrich C, Bulyha I, Søgaard-Andersen L (2014) Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J Bacteriol 196(2):378–390. https://doi.org/10.1128/JB.01094-13
Giltner CL, Habash M, Burrows LL (2010) Pseudomonas aeruginosa Minor pilins are incorporated into type IV pili. J Mol Biol 398(3):444–461. https://doi.org/10.1016/j.jmb.2010.03.028
Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. Gene 192(1):99–108. https://doi.org/10.1016/S0378-1119(97)00116-9
Hayward AC, Fegan N, Fegan M, Stirling GR (2010) Stenotrophomonas and Lysobacter: ubiquitous plant-associated gramma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108(3):756–770. https://doi.org/10.1111/j.1365-2672.2009.04471.x
Heiniger RW, Winther-Larsen HC, Pickles RJ, Koomey M, Wolfgang MC (2010) Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin. Cell Microbiol 12(8):1158–1173. https://doi.org/10.1111/j.1462-5822.2010.01461.x
Karuppiah V, Derrick JP (2011) Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem 286(27):24434–24442. https://doi.org/10.1074/jbc.M111.243535
Kobayashi DY, Reedy RM, Palumbo JD, Zhou JM, Yuen GY (2005) A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol 71(1):261–269. https://doi.org/10.1128/AEM.71.1.261-269.2005
Koo J, Tammam SKSY, Sampaleanu LM, Burrows LL, Howell PL (2008) PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa type IV pilus secretin. J Bacteriol 190(21):6961–6969. https://doi.org/10.1128/JB.00996-08
Leighton TL, Buensuceso RNC, Howell PL, Burrows LL (2015) Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environ Microbiol 17(11):4148–4163. https://doi.org/10.1111/1462-2920.12849
Li S, Du L, Yuen G, Harris SD (2006) Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 17(3):1218–1227. https://doi.org/10.1091/mbc.E05-06-0533
Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY (2008) An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology 98(6):695–701. https://doi.org/10.1094/PHYTO-98-6-0695
Lopez-Lopez G, Pascual A, Perea EJ (1991) Effect of plastic catheter material on bacterial adherence and viability. J Med Microbiol 34(6):349–353. https://doi.org/10.1099/00222615-34-6-349
Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault PH, Liu F, Du L (2011) Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J Am Chem Soc 133(4):643–645. https://doi.org/10.1021/ja105732c
Maier B, Wong GC (2015) How bacteria use type IV pili machinery on surfaces. Trends Microbiol 23(12):775–788. https://doi.org/10.1016/j.tim.2015.09.002
Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS (1993) Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 9(4):857–868. https://doi.org/10.1111/j.1365-2958.1993.tb01744.x
Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56(1):289–314. https://doi.org/10.1146/annurev.micro.56.012302.160938
Mattick JS, Whitchurch CB, Alm RA (1996) The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa—a review. Gene 179(1):147–155. https://doi.org/10.1016/S0378-1119(96)00441-6
Merz AJ, So M (2000) Interactions of pathogenic Neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16(1):423–457. https://doi.org/10.1146/annurev.cellbio.16.1.423
Nguyen Y, Sugiman-Marangos S, Harvey H, Bell SD, Charlton CL, Junop MS, Burrows LL (2015) Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J Biol Chem 290(1):601–611. https://doi.org/10.1074/jbc.M114.616904
Nunn DN, Lory S (1991) Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci U S A 88(8):3281–3285. https://doi.org/10.1073/pnas.88.8.3281
O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304. https://doi.org/10.1046/j.1365-2958.1998.01062.x
Patel NB, Hillman BI, Kobayashi DY (2010) Characterization of type IV pilus in the bacterial biocontrol agent Lysobacter enzymogenes strain C3. Phytopathology 100:S98
Patel N, Cornejo M, Lambert D, Craig A, Hillman BI, Kobayashi DY (2011) A multifunctional role for the type IV pilus in the bacterial biological control agent Lysobacter enzymogenes. Phytopathology 101:S138
Qian GL, BS H, Jiang YH, Liu FQ (2009) Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agr Sci China 8(1):68–75. https://doi.org/10.1016/S1671-2927(09)60010-9
Qian G, Wang Y, Qian D, Fan J, Hu B, Liu F (2012) Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J Microb Biot 28(2):549–557. https://doi.org/10.1007/s11274-011-0846-8
Qian G, Wang Y, Liu Y, Xu F, He YW, Du L, Venturi V, Fan J, Hu B, Liu F (2013) Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Appl Environ Microbiol 79(21):6604–6616. https://doi.org/10.1128/AEM.01841-13
Qian G, Xu F, Venturi V, Du L, Liu F (2014) Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11. Phytopathology 104(3):224–231. https://doi.org/10.1094/PHYTO-07-13-0188-R
Ramer SW, Schoolnik GK, CY W, Hwang J, Schmidt SA, Bieber D (2002) The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli. J Bacteriol 184(13):3457–3465. https://doi.org/10.1128/JB.184.13.3457-3465.2002
Reichenbach H (2006) The genus Lysobacter. Prokaryotes 6:939–957. https://doi.org/10.1007/0-387-30746-X_37
Sampaleanu LM, Bonanno JB, Ayers M, Koo J, Tammam S, Burley SK, Almo SC, Burrows LL, Howell PL (2009) Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 394(1):143–159. https://doi.org/10.1016/j.jmb.2009.09.037
Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98(12):6901–6904. https://doi.org/10.1073/pnas.121171698
Strom MS, Nunn DN, Lory S (1993) A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci U S A 90(6):2404–2408. https://doi.org/10.1073/pnas.90.6.2404
Takhar HK, Kemp K, Kim M, Howell PL, Burrows LL (2013) The platform protein is essential for type IV pilus biogenesis. J Bio Chem 288(14):9721–9728. https://doi.org/10.1074/jbc.M113.453506
Tammam S, Sampaleanu LM, Koo J, Sundaram P, Ayers M, Andrew Chong P, Forman-Kay JD, Burrows LL, Howell PL (2011) Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol Microbiol 82(6):1496–1514. https://doi.org/10.1111/j.1365-2958.2011.07903.x
Tammam S, Sampaleanu LM, Koo J, Manoharan K, Daubaras M, Burrows LL, Howell PL (2013) PilMNOPQ from the Pseudomonas aeruginosa type IV pilus system form a transenvelope protein interaction network that interacts with PilA. J Bacteriol 195(10):2126–2135. https://doi.org/10.1128/JB.00032-13
Wall D, Kaiser D (1999) Type IV pili and cell motility. Mol Microbiol 32(1):1–10. https://doi.org/10.1046/j.1365-2958.1999.01339.x
Wang YS, Zhao YX, Zhang J, Zhao YY, Shen Y, ZH S, GG X, LC D, Huffman JM, Venturi V, Qian GL, Liu FQ (2014) Transcriptomic analysis reveals new regulatory roles of Clp signaling in secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11. Appl Microbiol Biotechnol 98(21):9009–9020. https://doi.org/10.1007/s00253-014-6072-1
Wehbi H, Portillo E, Harvey H, Shimkoff AE, Scheurwater EM, Howell PL, Burrows LL (2011) The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J Bacteriol 193(2):540–550. https://doi.org/10.1128/JB.01048-10
Whitchurch CB, Mattick JS (1994) Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol 13(6):1079–1091. https://doi.org/10.1111/j.1365-2958.1994.tb00499.x
Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock RE, Brinkman FS (2008) Pseudomonas genome database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37(Database):D483–D488. https://doi.org/10.1093/nar/gkn861
Winther-Larsen HC, Wolfgang M, Dunham S, Van Putten JPM, Dorward D, Løvold C, Aas FE, Koomey M (2005) A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol Microbiol 56(4):903–917. https://doi.org/10.1111/j.1365-2958.2005.04591.x
Xie Y, Wright S, Shen Y, Du L (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29(11):1277–1287. https://doi.org/10.1039/c2np20064c
Xu G, Zhao Y, Du L, Qian G, Liu F (2015) Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11. Microb Biotechnol 8(3):499–509. https://doi.org/10.1111/1751-7915.12246
Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Ch 51(1):64–72. https://doi.org/10.1128/AAC.00931-06
Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89(9):817–822. https://doi.org/10.1094/PHYTO.1999.89.9.817
Zhang Y, Ducret A, Shaevitz J, Mignot T (2012) From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 36(1):149–164. https://doi.org/10.1111/j.1574-6976.2011.00307.x
Zhao Y, Qian G, Chen Y, Du L, Liu F (2017) Transcriptional and antagonistic responses of biocontrol strain Lysobacter enzymogenes OH11 to the plant pathogenic oomycete Pythium aphanidermatum. Front Microbiol 8:1025. https://doi.org/10.3389/fmicb.2017.01025
Zhou X, Qian G, Chen Y, Du L, Liu F, Yuen GY (2015) PilG is involved in the regulation of twitching motility and antifungal antibiotic biosynthesis in the biological control agent Lysobacter enzymogenes. Phytopathology 105(10):1318–1324. https://doi.org/10.1094/PHYTO-12-14-0361-R
Acknowledgments
We thank Prof. Shan-Ho Chou (National Chung Hsing University) and Dr. Benard Omondi Odhiambo in our laboratory for critical reviewing and revising this manuscript.
Funding
This study was supported by the Fundamental Research Funds for the Central Universities (Y0201600126 and KYTZ201403 to G. Qian), National Basic Research (973) program of China (2015CB150600 to G. Qian), National Key Research and Development Program (2017YFD020110), Special Fund for Agro-Scientific Research in the Public Interest (No. 201303015 to G. Qian and F. Liu), National Natural Science Foundation of China (31371981 and 31572046 to G. Qian), Innovation Team Program for Jiangsu Universities (2017), the Jiangsu Provincial Key Technology Support Program (BE2015354 and BE2015354 to F. Liu), “948” Project of the Ministry of Agriculture (2014-Z24 to F. Liu), and National pear industry technology system (CARS-29-09 to F. Liu and G. Qian).
Author information
Authors and Affiliations
Contributions
G. Q., and F. L. conceived and designed experiments. J. X., J. C., and Y. C. carried out experiments. J. X., J. C., Y. C., G. Q., and F. L. analyzed data and prepared figures. G. Q. wrote the manuscript. F. L reviewed and revised the manuscript. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Ethical approval
This article does not contain any studies with human participants or animals.
Electronic supplementary material
ESM 1
(PDF 2811 kb)
Rights and permissions
About this article
Cite this article
Xia, J., Chen, J., Chen, Y. et al. Type IV pilus biogenesis genes and their roles in biofilm formation in the biological control agent Lysobacter enzymogenes OH11. Appl Microbiol Biotechnol 102, 833–846 (2018). https://doi.org/10.1007/s00253-017-8619-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-017-8619-4


