Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis

Abstract

Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%–62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, New York,USA

    Google Scholar 

  2. Bhattacharya M, Biswas D, Sana S, Datta S (2015) Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1. 3 Biotech 5(5):807–817. https://doi.org/10.1007/s13205-015-0282-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bisaria R, Madan M, Mukhopadhyay SN (1983) Production of biogas from residues from mushroom cultivation. Biotechnol Lett 5(12):811–812. https://doi.org/10.1007/BF01386653

    Article  Google Scholar 

  4. Bisaria R, Vasudevan P, Bisaria VS (1990) Utilization of spent agro-residues from mushroom cultivation for biogas production. Appl Microbiol Biotechnol 33(5):607–609. https://doi.org/10.1007/BF00172560

    CAS  Article  Google Scholar 

  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chaturvedi V, Verma P (2015) Biodegradation of malachite green by a novel copper-tolerant Ochrobactrum pseudogrignonense strain GGUPV1 isolated from copper mine waste water. Bioresour Bioprocess 2(1). https://doi.org/10.1186/s40643-015-0070-8

  7. Chen CL, JH W, Liu WT (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42(8–9):1963–1976. https://doi.org/10.1016/j.watres.2007.11.037

    CAS  Article  PubMed  Google Scholar 

  8. Chen X, Wang Y, Yang F, Qu Y, Li X (2015) Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase. Ann Microbiol 65(3):1699–1707. https://doi.org/10.1007/s13213-014-1009-6

    CAS  Article  Google Scholar 

  9. CNBS (1986) Determination of soluble sugar in vegetable and fruit. China National Bureau of Standards. Beijing, China

    Google Scholar 

  10. Coats ER, Ibrahim I, Briones A, Brinkman CK (2012) Methane production on thickened, pre-fermented manure. Bioresour Technol 107(2):205–212. https://doi.org/10.1016/j.biortech.2011.12.077

    CAS  Article  PubMed  Google Scholar 

  11. Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    CAS  Article  PubMed  Google Scholar 

  13. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Finney KN, Ryu C, Sharifi VN, Swithenbank J (2009) The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresour Technol 100(1):310–315. https://doi.org/10.1016/j.biortech.2008.05.054

    CAS  Article  PubMed  Google Scholar 

  15. Guo X, Wang C, Sun F, Zhu W, Wu W (2014) A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour Technol 152:420–428. https://doi.org/10.1016/j.biortech.2013.11.012

    CAS  Article  PubMed  Google Scholar 

  16. Jang HM, Kim M-S, Ha JH, Park JM (2015) Reactor performance and methanogenic archaea species in thermophilic anaerobic co-digestion of waste activated sludge mixed with food wastewater. Chem Eng J 276:20–28. https://doi.org/10.1016/j.cej.2015.04.072

    CAS  Article  Google Scholar 

  17. Kowalczyk A, Chyc M, Ryszka P, Latowski D (2016) Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environ Sci Pollut Res Int 23(11):11349–11356. https://doi.org/10.1007/s11356-016-6563-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Lü F, Bize A, Guillot A, Monnet V, Madigou C, Chapleur O, Mazéas L, He P, Bouchez T (2014) Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME J 8(1):88–102. https://doi.org/10.1038/ismej.2013.120

    Article  PubMed  Google Scholar 

  19. Lin Y, Ge X, Li Y (2014) Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production. Bioresour Technol 169:468–474. https://doi.org/10.1016/j.biortech.2014.07.020

    CAS  Article  PubMed  Google Scholar 

  20. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mikiciński A, Sobiczewski P, Puławska J, Maciorowski R (2016) Control of fire blight (Erwinia amylovora) by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple (Malus spp.) Eur J Plant Pathol 145(2):265–276. https://doi.org/10.1007/s10658-015-0837-y

    Article  Google Scholar 

  22. Niu Q, Qiao W, Qiang H, Li YY (2013) Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia. Bioresour Technol 146:223–233. https://doi.org/10.1016/j.biortech.2013.07.038

    CAS  Article  PubMed  Google Scholar 

  23. Niu Q, Takemura Y, Kubota K, Li YY (2015) Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: microbial community dynamics and process resilience. Waste Manag 43:114–122. https://doi.org/10.1016/j.wasman.2015.05.012

    CAS  Article  PubMed  Google Scholar 

  24. Nordell E, Nilsson B, Nilsson Paledal S, Karisalmi K, Moestedt J (2016) Co-digestion of manure and industrial waste—the effects of trace element addition. Waste Manag 47(Pt A):21–27. https://doi.org/10.1016/j.wasman.2015.02.032

  25. Phan CW, Sabaratnam V (2012) Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol 96(4):863–873. https://doi.org/10.1007/s00253-012-4446-9

    CAS  Article  PubMed  Google Scholar 

  26. Pivato A, Vanin S, Raga R, Lavagnolo MC, Barausse A, Rieple A, Laurent A, Cossu R (2016) Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag 49:378–389. https://doi.org/10.1016/j.wasman.2015.12.009

    CAS  Article  PubMed  Google Scholar 

  27. SAC (1994) Method for the determination of crude protein in feedstuffs. Standardization Administration of China, Beijing, China

    Google Scholar 

  28. SAC (2006) Determination of crude fat in feeds. Standardization Administration of China, Beijing, China

    Google Scholar 

  29. Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K-H, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136(1–2):77–90. https://doi.org/10.1016/j.jbiotec.2008.05.008

    Article  PubMed  Google Scholar 

  30. Sharma S, Madan M, Vasudevan P (1989) Biomethane production from fermented substrates. J Ferment Bioeng 68(4):296–297. https://doi.org/10.1016/0922-338X(89)90034-2

    CAS  Article  Google Scholar 

  31. Shi X-S, Yuan X-Z, Wang Y-P, Zeng S-J, Qiu Y-L, Guo R-B, Wang L-S (2014) Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate. Chem Eng J 244:258–263. https://doi.org/10.1016/j.cej.2014.02.007

    CAS  Article  Google Scholar 

  32. Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22(5):845–857. https://doi.org/10.1007/s10532-010-9442-0

    CAS  Article  PubMed  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory Technical Report NREL/TP-510-42618, Golden

  34. Stefaniuk M, Bartminski P, Rozylo K, Debicki R, Oleszczuk P (2015) Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. J Hazard Mater 298:195–202. https://doi.org/10.1016/j.jhazmat.2015.05.026

    CAS  Article  PubMed  Google Scholar 

  35. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:14. https://doi.org/10.1186/s13068-014-0193-8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subba Reddy GV, Rafi MM, Rubesh Kumar S, Khayalethu N, Muralidhara Rao D, Manjunatha B, Philip GH, Reddy BR (2016) Optimization study of 2-hydroxyquinoxaline (2-HQ) biodegradation by Ochrobactrum sp. HQ1. 3 Biotech 6(1). https://doi.org/10.1007/s13205-015-0358-6

  37. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sorensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626. https://doi.org/10.1111/1574-6941.12148

    CAS  Article  PubMed  Google Scholar 

  38. Synytsya A, Míčková K, Synytsya A, Jablonský I, Spěváček J, Erban V, Kováříková E, Čopíková J (2009) Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr Polym 76(4):548–556. https://doi.org/10.1016/j.carbpol.2008.11.021

    CAS  Article  Google Scholar 

  39. Tian Z, Chauliac D, Pullammanappallil P (2013) Comparison of non-agitated and agitated batch, thermophilic anaerobic digestion of sugarbeet tailings. Bioresour Technol 129:411–420. https://doi.org/10.1016/j.biortech.2012.11.056

    CAS  Article  PubMed  Google Scholar 

  40. Wan S, Sun L, Sun J, Luo W (2013) Biogas production and microbial community change during the co-digestion of food waste with chinese silver grass in a single-stage anaerobic reactor. Biotechnol Bioproc E 18(5):1022–1030. https://doi.org/10.1007/s12257-013-0128-4

    CAS  Article  Google Scholar 

  41. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/AEM.00062-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Xu F, Li Y (2012) Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour Technol 118:219–226. https://doi.org/10.1016/j.biortech.2012.04.102

    CAS  Article  PubMed  Google Scholar 

  43. Yang ZH, Xu R, Zheng Y, Chen T, Zhao LJ, Li M (2016) Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. Bioresour Technol 212:164–173. https://doi.org/10.1016/j.biortech.2016.04.046

    CAS  Article  PubMed  Google Scholar 

  44. Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258. https://doi.org/10.1016/j.jbiotec.2012.01.020

    CAS  Article  PubMed  Google Scholar 

  45. Zhang Z, Nan Z (2014) Erwinia persicina, a possible new necrosis and wilt threat to forage or grain legumes production. Eur J Plant Pathol 139(2):349–358. https://doi.org/10.1007/s10658-014-0390-0

    Article  Google Scholar 

  46. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energ Combust 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  47. Zhu H, Sheng K, Yan E, Qiao J, Lv F (2012) Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int J Biol Macromol 50(3):840–843. https://doi.org/10.1016/j.ijbiomac.2011.11.016

    CAS  Article  PubMed  Google Scholar 

  48. Zhu J, Han M, Zhang G, Yang L (2015) Co-digestion of spent mushroom substrate and corn stover for methane production via solid-state anaerobic digestion. J Renew Sustain Ener 7(2):023135. https://doi.org/10.1063/1.4919404

    Article  Google Scholar 

Download references

Funding

This study was funded by Natural Science Foundation of China (31370146), Collaborative Innovation for Juncao Ecology Industry (JCZXGGKT-2015001), Fujian Province Science and Technology Major Projects (2014NZ2002-1), Sub Project of National Science and Technology Support Program (2014BAD15B01-6).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Lin, M., Fan, J. et al. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis. Appl Microbiol Biotechnol 102, 499–507 (2018). https://doi.org/10.1007/s00253-017-8578-9

Download citation

Keywords

  • Biogas
  • Lignocellulosic biomass
  • Proteobacteria
  • Crenarchaeota
  • Methanothermobacter