Skip to main content

Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions

Abstract

White-rot fungi are renowned for their remarkable potential to degrade a wide range of organic pollutants. They are applicable in standard bioreactors offering both the use of the continuous mode of action and easy upscaling of the biodegradation process. The recent advance in this field consisted in the use of various fungi and different types of reactors in the treatment of real wastewaters. Most degradation studies involving white-rot fungi carried out so far used controlled, aseptic conditions. However, during bioremediation of real wastewaters, the degradation capacity of the fungi would be significantly affected by autochthonous microorganisms. Consequently, for the development of sustainable bioremediation technologies, it is important to understand the mechanisms involved in the intermicrobial interactions occurring during the bioremediation process. This review summarizes recent applications of white-rot fungi to biodegradation of recalcitrant organopollutants under non-sterile conditions describing the invading microorganism(s) and the way how they affect the stability and degradation efficiency of the fungal bioreactor cultures. In addition, studies where fungal cultures were exposed to defined microbial stress are also reported documenting the effect and mechanisms of microbial interactions. Advanced OMICs techniques, specifically the genomics and metabolomics analyses, are suggested to help in identification of the invading microorganisms and in discovery of mechanisms taking part in the interspecific interactions.

This is a preview of subscription content, access via your institution.

References

  1. Andleeb S, Atiq N, Robson GD, Ahmed S (2012) An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Env Sci Poll Res 19(5):1728–1737. https://doi.org/10.1007/s11356-011-0687-x

    CAS  Article  Google Scholar 

  2. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme systems. Biodegradation 19:771–783. https://doi.org/10.1007/s10532-008-9185-3

    CAS  Article  PubMed  Google Scholar 

  3. Badia-Fabregat M, Lucas D, Tuomivirta T, Fritze H, Pennanen T, Rodríguez-Mozaz S, Barceló D, Caminal G, Vicent T (2017) Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Sci Tot Env 579:366–377. https://doi.org/10.1016/j.scitotenv.2016.11.088

    CAS  Article  Google Scholar 

  4. Badia-Fabregat M, Lucas D, Gros M, Rodriguez-Mozaz S, Barcelo D, Caminal G, Vicent T (2015) Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. J Haz Mat 283:663–671

    CAS  Article  Google Scholar 

  5. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotech Adv 32:1180–1204. https://doi.org/10.1016/j.biotechadv.2014.03.001

    CAS  Article  Google Scholar 

  6. Borras E, Llorens-Blanch G, Rodriguez-Rodriguez CE, Sarra M, Caminal G (2011) Soil colonization by Trametes versicolor grown on lignocellulosic materials: substrate selection and naproxen degradation. Int Biodeter Biodegr 65(6):846–852. https://doi.org/10.1016/j.ibiod.2011.06.005

    CAS  Article  Google Scholar 

  7. Byss M, Elhottova D, Triska J, Baldrian P (2008) Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbon removal and soil microbial community composition in the laboratory-scale study. Chemosphere 73(9):1518–1523. https://doi.org/10.1016/j.chemosphere.2008.07.30

    CAS  Article  PubMed  Google Scholar 

  8. Chavan MN, Dandi ND, Kulkarni MV, Chaudhari AB (2013) Biotreatment of melanoidin-containing distillery spent wash effluent by free and immobilized Aspergillus oryzae MTCC7691. Wat Air Soil Poll 224(11):1755. https://doi.org/10.1007/s11270-013-1755-2

    Article  Google Scholar 

  9. Cobas M, Ferreira L, Tavares T, Sanroman MA, Pazos M (2013) Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91(5):711–716. https://doi.org/10.1016/j.chemosphere.2013.01.028

    CAS  Article  PubMed  Google Scholar 

  10. Cruz-Morato C, Ferrando-Climent L, Rodriguez-Mozaz S, Barcelo D, Marco-Urrea E, Vicent T, Sarra M (2013b) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Wat Res 47:5200–5210

    CAS  Article  Google Scholar 

  11. Cruz-Morato C, Jelic A, Perez S, Petrovic M, Barcelo D, Marco-Urrea E, Sarra M, Vicent T (2013a) Continuous treatment of clofibric acid by Trametes versicolor in a fluidized bed bioreactor: identification of transformation products and toxicity assessment. Biochem Eng J 75:79–85. https://doi.org/10.1016/j.bej.2013.03.020

    CAS  Article  Google Scholar 

  12. De Miranda RDCM, de Barros GE, Pereira N, Marin-Morales MA, Gomez Machado KM, de Gumao NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367

    CAS  Article  Google Scholar 

  13. Gao DW, Zeng YG, Wen XG, Qian Y (2008) Competition strategies for the incubation of white rot fungi under non-sterile conditions. Process Biochem 43:937–944. https://doi.org/10.1016/ j.procbio.2008.04.026

    CAS  Article  Google Scholar 

  14. Gogavekar SS, Rokade SA, Ranveer RC, Ghosh JS, Kalyani DC, Sahoo AK (2014) Important nutritional constituents, flavor components, antioxidant and antibacterial properties of Pleurotus sajor-caju. J Food Sci Technol Mysore 51(8):1483–1491. https://doi.org/10.1007/s13197-012-0656-5

    CAS  Article  Google Scholar 

  15. Gros M, Cruz-Morato C, Marco-Urrea E, Longree P, Singer H, Sarra M, Hollender J, Vicent T, Rodriguez-Mozaz S, Barcelo D (2014) Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of the degradation products. Wat Res 60:228–241

    CAS  Article  Google Scholar 

  16. Hai FI, Yamamoto K, Nakajima F, Fukushi K, Nghiem LD, Price WE, Jin B (2013) Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour. Bioresour Technol 141:29–34. https://doi.org/10.1016/j.biortech.2013.02.020

    CAS  Article  PubMed  Google Scholar 

  17. Halecký M, Páca J, Stiborová M, Kozliak E, Maslanová I (2013) Pollutant interactions during the biodegradation of phenolic mixtures with either 2- or 3-mononitrophenol in a continuously operated packed bed reactor. J Env Sci Health Part A-Tox/Haz Subst Env Eng 48(13):1609–1618. https://doi.org/10.1080/10934529.2013.815082

    Article  Google Scholar 

  18. Hiscox J, Baldrian P, Rogers HJ, Boddy L (2010) Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet Biol 47:562–571. https://doi.org/10.1016/j.fgb.2010.03.007

    CAS  Article  PubMed  Google Scholar 

  19. Jelic A, Cruz-Morato C, Marco-Urrea E, Sarra M, Perez S, Vicent T, Petrovic M, Barcelo D (2012) Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Wat Res 46(4):955–964. https://doi.org/10.1016/j.watres.2011.11.063

    CAS  Article  Google Scholar 

  20. Jonstrup M, Kumar N, Guieysse B, Murto M, Mattiasson B (2013) Decolorization of textile dyes by Bjerkandera sp. BOL13 using waste biomass as carbon source. J Chem Technol Biotechnol 88:388–394

    CAS  Article  Google Scholar 

  21. Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Env Int 35:127–141. https://doi.org/10.1016/j.envint.2008.05.010

    CAS  Article  Google Scholar 

  22. Kissi M, Mountadar M, Assobhei O, Gargiulo O, Palmieri G, Giardina P, Sannia G (2001) Roles of two white-rot basidiomycete fungi in decolorization and detoxification of olive mill wastewater. Appl Microbiol Biotechnol 57:221–226

    CAS  Article  PubMed  Google Scholar 

  23. Krupinski M, Szewczyk R, Dlugonski J (2013) Detoxification and elimination of xenoestrogen nonylphenol by the filamentous fungus Aspergillus versicolor. Int Biodeter Biodegr 82:59–66. https://doi.org/10.1016/j.ibiod.2013.03.011

    CAS  Article  Google Scholar 

  24. Li X, de Toledo RA, Wang S, Shim H (2015a) Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition. New Biotechnol 32(2):282–289. https://doi.org/10.1016/j.nbt.2015.01.003

    CAS  Article  Google Scholar 

  25. Li X, Xu J, deToledo RA, Shim H (2015b) Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium under non-sterile conditions. Bioresour Technol 197:465–474. https://doi.org/10.1016/j.biortech.2015.08.118

    CAS  Article  PubMed  Google Scholar 

  26. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Man Sci 56:688–695. https://doi.org/10.1002/1526-4998(200008)56:8<688::AID-PS186>3.3.CO;2-M

    CAS  Article  Google Scholar 

  27. Llorens-Blanch G, Badia-Fabregat M, Lucas D, Rodriguez-Mozaz S, Barcelo D, Pennanen T, Caminal G, Blanquez P (2015) Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor. Environ Sci: Proc Imp 17:429–440. https://doi.org/10.1039/C4EM00579A

    CAS  Google Scholar 

  28. Lu XM, Ma JH, Wang ZH, Huang MS (2010) Application of polymerase chain reaction-denaturing gradient gel electrophoresis to resolve taxonomic diversity in white rot fungus reactors. Env Eng Sci 27(6):493–503. https://doi.org/10.1089/ees.2010.0007

    CAS  Article  Google Scholar 

  29. Novotný Č, Trošt N, Šušla M, Svobodová K, Mikesková H, Válková H, Malachová K, Pavko A (2012) The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions. Bioresour Technol 114:241–246. https://doi.org/10.1016/j.biortech.2012.03.080

    Article  PubMed  Google Scholar 

  30. Olivieri G, Russo ME, Giardina P, Marzocchella A, Sannia G, Salatino P (2012) Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus. J Ind Microbiol Biotechnol 39:719–729

    CAS  Article  PubMed  Google Scholar 

  31. Parada RY, Murakami S, Shimomura N, Otani H (2012) Suppression of fungal and bacterial diseases of cucumber plants by using the spent mushroom substrate of Lyophyllum decastes and Pleurotus eryngii. J Phytopathol 160(7–8):390–396. https://doi.org/10.1111/j.1439-0434.2012.01916.x

    Article  Google Scholar 

  32. Prashanth SN, Bianco G, Cataldi TRI, Iacobellis NS (2011) Acylhomoserine lactone production by bacteria associated with cultivated mushrooms. J Agr Food Chem 59(21):11461–11472. https://doi.org/10.1021/jf202313j

    CAS  Article  Google Scholar 

  33. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white rot fungi. World J Microbiol Biotechnol 27(8):1839–1846. https://doi.org/10.1007/s11274-010-0642-x

    Article  Google Scholar 

  34. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2012a) Operation of stirred tank reactors (STRs) and fixed-bed reactors (FBRs) with free and immobilized Phanerochaete chrysosporium for the continuous removal of pharmaceutical compounds. Biochem Eng J 66:38–45. https://doi.org/10.1016/j.bej.2012.04.011

    CAS  Article  Google Scholar 

  35. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2012b) Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation 23(1):145–156. https://doi.org/10.1007/s10532-011-9494-9

    CAS  Article  PubMed  Google Scholar 

  36. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2012c) Evaluation of two operational regimes: fed-batch and continuous for the removal of pharmaceuticals in a fungal stirred tank reactor. In: Bardone E, Brucato A, Keshavarz T, Pierucci S, Klemes JJ (eds) Chemical Engineering Transactions 27: 151–156. doi: https://doi.org/10.3303/CET1227026

  37. Rodriguez-Rodriguez CE, Baron E, Gago-Ferrero P, Jelic A, Lorca M, Farre M, Diaz-Cruz MS, Eljarrat E, Petrovic M, Caminal G, Barcelo D, Vicent T (2012) Removal of pharmaceuticals, polybrominated flame retardants and UV-filters from sludge by the fungus Trametes versicolor in bioslurry reactor. J Haz Mat 233:235–243. https://doi.org/10.1016/j.jhazmat.2012.07.024

    Article  Google Scholar 

  38. Rodriguez-Rodriguez CE, Jelic A, Llorca M, Farre M, Caminal G, Petrovic M, Barcelo D, Vicent T (2011) Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge. Bioresour Technol 102(10):5602–5608. https://doi.org/10.1016/j.biortech.2011.02.029

    CAS  Article  PubMed  Google Scholar 

  39. Sanjust E, Pompei R, Rescigno A, Rinaldi A, Ballero M (1991) Olive milling wastewater as medium for growth of four Pleurotus species. Appl Microbiol Biotechnol 31:223–235

    CAS  Google Scholar 

  40. Schillaci D, Arizza V, Gargano ML, Venturella G (2013) Antibacterial activity of Mediterranean oyster mushrooms, species of genus Pleurotus (higher basidiomycetes). Int J Med Mushrooms 15(6):591–594 WOS: 000327905500007

    Article  PubMed  Google Scholar 

  41. Souza ES, Souza JVB, Silva FT, Paiva TCB (2014) Treatment of an ECF bleaching effluent with white-rot fungi in an air-lift bioreactor. Env Earth Sci 72(4):1289–1294. https://doi.org/10.1007/s12665-014-3048-5

    CAS  Article  Google Scholar 

  42. Spina F, Romagnolo A, Prigione V, Tigini V, Varese GC (2014) A scaling-up issue: the optimal bioreactor configuration for effective fungal treatment of textile wastewaters. In: Bardone E, Brucato A, Keshavarz T, Pierucci S, Klemes JJ (eds) Chemical Engineering Transactions 38: 37–42. Doi: https://doi.org/10.3303/CET1438007

  43. Svobodová K, Petráčková D, Kozická B, Halada P, Novotný Č (2016a) Mutual interactions of Pleurotus ostreatus with bacteria of activated sludge in solid-bed bioreactors. World J Microbiol Biotechnol 32:94. https://doi.org/10.1007/s11274-016-2050-3

    Article  PubMed  Google Scholar 

  44. Svobodová K, Petráčková D, Szabad H, Novotný Č (2016b) Selective adhesion of wastewater bacteria to Pleurotus ostreatus mycelium in a trickle-bed bioreactor. AIMS Env Sci 3(3):395–407. https://doi.org/10.3934/environsci.2016.3.395

    Article  Google Scholar 

  45. Tastan BE, Donmez G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pest Biochem Physiol 118:33–37. https://doi.org/10.1016/j.pestbp.2014.11.002

    Article  Google Scholar 

  46. Válková H, Novotný Č, Malachová K, Šlosarčíková P, Fojtík J (2017) Effect of bacteria on the degradation ability of Pleurotus ostreatus. Sci Tot Env 548-585:1114–1120. https://doi.org/10.1016/j.scitotenv.2017.01.171

    Article  Google Scholar 

  47. Vamanu E, Ene M, Pelinescu D, Sarbu I, Vamanu A, Nita S (2011) Determination of antioxidant and antimicrobial properties of alcoholic extract from Pleurotus ostreatus M2191 mycelium obtained in the presence of various nitrogen sources. Rev Chim 62(12):1189–1194 WOS:000298220300013

    CAS  Google Scholar 

  48. Wessenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotech Adv 22:161–187. https://doi.org/10.1016/j.biotechadv.2003.08.011

    Article  Google Scholar 

  49. Wetzstein HG, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71(1):90–100

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was realized in the frame of COST Action ES1403 project and the Institutional Research Concept RVO: 61388971.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kateřina Svobodová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svobodová, K., Novotný, Č. Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions. Appl Microbiol Biotechnol 102, 39–46 (2018). https://doi.org/10.1007/s00253-017-8575-z

Download citation

Keywords

  • Waste effluents
  • Bioremediation
  • White-rot fungal bioreactors
  • Non-sterile conditions
  • Microbial stress
  • Community structure