Effects of different carbon sources on enhanced biological phosphorus removal and “Candidatus Accumulibacter” community composition under continuous aerobic condition

Abstract

Previous studies have shown that enhanced biological phosphorus removal (EBPR) performance under continuous aerobic conditions always eventually deteriorates; however, the speed at which this happens depends on the carbon source supplied. The published data suggest that propionate is a better carbon source than acetate is for maintaining operational stability, although it is not clear why. A lab-scale sequencing batch reactor was run initially under conventional anaerobic/aerobic conditions with either acetate or propionate as the carbon source. Chemical and microbiological analyses revealed that both sources performed as expected for such systems. When continuous aerobic conditions were imposed on both these established communities, marked shifts of the “Candidatus Accumulibacter” clades were recorded for both carbon sources. Here, we discuss whether this shift could explain the prolonged EBPR stability observed with propionate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahn J, Daidou T, Tsuneda S, Hirata A (2002) Transformation of phosphorus and relevant intracellular compounds by phosphorus accumulating enrichment culture in the presence of both the electron acceptor and electron donor. Biotechnol Bioeng 79(1):83–93. https://doi.org/10.1002/bit.10292

    CAS  Article  PubMed  Google Scholar 

  2. Ahn J, Schroeder S, Beer M, McIlroy S, Bayly RC, May JW, Vasiliadis G, Seviour RJ (2007) Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol 73(7):2257–2270. https://doi.org/10.1128/AEM.02080-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH (2016) “Candidatus Propionivibrio aalborgensis”: a novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants. Front Microbiol 7:1033. https://doi.org/10.3389/fmicb.2016.01033

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amann RI, Binder BJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microb 56(6):1919–1925

    CAS  Google Scholar 

  5. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association

  6. Arun V, Mino T, Matsuo T (1988) Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Water Res 22(5):565–570. https://doi.org/10.1016/0043-1354(88)90056-5

    CAS  Article  Google Scholar 

  7. Beun JJ, Paletta F, Van Loosdrecht MCM, Heijnen JJ (2000) Stoichiometry and kinetics of PHB metabolism in aerobic, slow growing, activated sludge cultures. Biotechnol Bioeng 67(4):379–389. https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4<379::AID-BIT1>3.0.CO;2-2

    CAS  Article  PubMed  Google Scholar 

  8. Blackall LL, Crocetti GR, Saunders AM, Bond PL (2002) A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie Van Leeuwenhoek 81(1–4):681–691. https://doi.org/10.1023/A:1020538429009

    CAS  Article  PubMed  Google Scholar 

  9. Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Domingo JS, McMahon KD, Noguera DR (2016) Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. Water Res 102:125–137. https://doi.org/10.1016/j.watres.2016.06.033

    CAS  Article  PubMed  Google Scholar 

  10. Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D, Blackall LL (2000) Identification of polyphosphate accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66(3):1175–1182. https://doi.org/10.1128/AEM.66.3.1175−1182.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Crocetti GR, Banfield JF, Keller J, Bond PL, Blackall LL (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148(Pt 11):3353–3364. https://doi.org/10.1099/00221287-148-11-3353

    CAS  Article  PubMed  Google Scholar 

  12. Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and valuation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  Article  PubMed  Google Scholar 

  13. Daims H, Stoecker K, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Taylor & Francis, New York, pp 213–239

    Google Scholar 

  14. Dhanasekaran S, Doherty TM, Kenneth J, TB Trials Study Group (2010) Comparison of different standards for real-time PCR-based absolute quantification. J Immunol Methods 354(1–2):34–39. https://doi.org/10.1016/j.jim.2010.01.004

    CAS  Article  PubMed  Google Scholar 

  15. Dircks K, Henze M, Van Loosdrecht MCM, Mosbæk H, Aspegren H (2001) Storage and degradation of poly-b-hydroxybutyrate in activated sludge under aerobic conditions. Water Res 35(9):2277–2285. https://doi.org/10.1016/S0043-1354(00)00511-X

    CAS  Article  PubMed  Google Scholar 

  16. Garcia MH, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269. https://doi.org/10.1038/nbt1247

    Article  Google Scholar 

  17. Gonzalez-Gil G, Holliger C (2011) Dynamics of microbial community structure of and enhanced biological phosphorus removal by aerobic granules cultivated on propionate or acetate. Appl Environ Microbiol 77(22):8041–8051. https://doi.org/10.1128/AEM.05738-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Guisasola A, Pijuan M, Baeza JA, Carrera J, Casas C, Lafuente J (2004) Aerobic phosphorus release linkedto acetateuptake in bio-P sludge: process modelling using oxygen uptake rate. Biotechnol Bioeng 85(7):722–723. https://doi.org/10.1002/bit.10868

    CAS  Article  PubMed  Google Scholar 

  19. He S, McMahon KD (2011) Microbiology of ‘Candidatus Accumulibacter’ in activated sludge. Microb Biotechnol 4(5):603–619. https://doi.org/10.1111/j.1751-7915.2011.00248.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. He S, Gall DL, McMahon KD (2007) “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Appl Environ Microbiol 73(18):5865–5874. https://doi.org/10.1128/AEM.01207-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hesselmann RPX, Von Rummell R, Resnick SM, Hany R, Zehnder AJB (2000) Anaerobic metabolism of bacteria performing enhanced biological phosphate removal. Water Res 34(14):3487–3494. https://doi.org/10.1016/S0043-1354(00)00092-0

    CAS  Article  Google Scholar 

  22. Kim JM, Lee HJ, Lee DS, Jeon CO (2013) Characterization of the denitfirication-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal. Appl Environ Microbiol 79(6):1969–1979. https://doi.org/10.1128/AEM.03464-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Liu WT, Mino T, Nakamura K, Matsuo T (1996) Glycogen accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphorus removal. Water Res 30(1):75–82. https://doi.org/10.1016/0043-1354(95)00121-Z

    CAS  Article  Google Scholar 

  24. Lu H, Oehmen A, Virdis B, Keller J, Yuan Z (2006) Obtaining highly enriched cultures of Candidatus Accumulibacter Phosphatis through alternating carbon sources. Water Res 40(20):3838–3848. https://doi.org/10.1016/j.watres.2006.09.004

    CAS  Article  PubMed  Google Scholar 

  25. Mao Y, Graham DW, Tamaki Y, Zhang T (2015) Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants. Sci Rep 5:11857. https://doi.org/10.1038/srep11857

    Article  PubMed  PubMed Central  Google Scholar 

  26. McMahon KD, Yilmaz S, He S, Gall DL, Jenkins D, Keasling JD (2007) Polyphosphate kinase genes from full-scale activated sludge plants. Appl Microbiol Biotechnol 77:167–173. https://doi.org/10.1007/s00253-007-1122-6

    CAS  Article  PubMed  Google Scholar 

  27. Meyer RL, Saunders AM, Blackall LL (2006) Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology 152(Pt 2):419–429. https://doi.org/10.1099/mic.0.28445-0

    CAS  Article  PubMed  Google Scholar 

  28. Mikami Y, Nittami T, Kurisu F (2013) Effect of endogenous carbon source on biological denitrification rate. J Water Environ Technol 11(1):1–9. https://doi.org/10.2965/jwet.2013.1

    Article  Google Scholar 

  29. Mino T, Arun V, Tsuzuki Y, Matsuo T (1987) Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In: Ramadori R (ed) Biological phosphate removal from wastewaters (advances in water pollution control 4). Pergamon Press, Oxford, pp 27–38

    Google Scholar 

  30. Mino T, Loosdrecht MCM, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32(11):3192–3207. https://doi.org/10.1016/S0043-1354(98)00129-8

    Article  Google Scholar 

  31. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700. https://doi.org/10.1007/s00253-017-8571-3

  32. Nittami T, Oi H, Matsumoto K, Seviour RJ (2011) Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions. New Biotechnol 29(1):2–8. https://doi.org/10.1016/j.nbt.2011.06.012

    CAS  Article  Google Scholar 

  33. Oehmen A, Zeng R, Yuan Z, Keller J (2005a) Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnol Bioeng 91(1):43–53. https://doi.org/10.1002/bit.20480

    CAS  Article  PubMed  Google Scholar 

  34. Oehmen A, Yuan Z, Blackall LL, Keller J (2005b) Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol Bioeng 91(2):162–168. https://doi.org/10.1002/bit.20500

    CAS  Article  PubMed  Google Scholar 

  35. Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J (2006) Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123(1):22–32. https://doi.org/10.1016/j.jbiotec.2005.10.009

    CAS  Article  PubMed  Google Scholar 

  36. Oehmen A, Zeng RJ, Keller J, Yuan Z (2007) Modeling the aerobic metabolism of polyphosphate-accumulating organisms enriched with propionate as a carbon source. Water Environ Res 79(13):2477–2486

    CAS  PubMed  Google Scholar 

  37. Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A (2014) High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus “Accumulibacter phosphatis”. Water Res 64:102–112. https://doi.org/10.1016/j.watres.2014.06.038

    CAS  Article  PubMed  Google Scholar 

  38. Pereira H, Lemos PC, Reis MAM, Crespo JPSG, Carrondo MJT, Santos H (1996) Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labelling experiments. Water Res 30(9):2128–2138

    CAS  Article  Google Scholar 

  39. Peterson SB, Warnecke F, Madejska J, McMahon KD, Hugenholtz P (2008) Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal. Environ Microbiol 10(10):2692–2703. https://doi.org/10.1111/j.1462-2920.2008.01690.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Pijuan M, Saunders AM, Guisasola A, Baeza JA, Casas C, Blackall LL (2004) Enhanced biological phosphorous removal in a sequencing batch reactor using propionate as the sole carbon source. Biotechnol Bioeng 85(1):56–67. https://doi.org/10.1002/bit.10813

    CAS  Article  PubMed  Google Scholar 

  41. Pijuan M, Guisasola A, Baeza JA, Carrera J, Casas C, Lafuente J (2005) Aerobic phosphorus release linked to acetate uptake: influence of PAO intracellular storage compounds. Biochem Eng J 26(2–3):184–190. https://doi.org/10.1016/j.bej.2005.04.014

    CAS  Article  Google Scholar 

  42. Pijuan M, Guisasola A, Baeza JA, Carrera J, Casas C, Lafuente J (2006) Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. J Biotechnol 123(1):117–126. https://doi.org/10.1016/j.jbiotec.2005.10.018

    CAS  Article  PubMed  Google Scholar 

  43. Pijuan M, Casas C, Baeza JA (2009) Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochem 44(1):97–105. https://doi.org/10.1016/j.procbio.2008.09.017

    CAS  Article  Google Scholar 

  44. Puiga S, Coma M, Monclús H, Van Loosdrecht MCM, Colprim J, Balaguer MD (2008) Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. Water Res 42(3):557–566. https://doi.org/10.1016/j.watres.2007.07.050

    Article  Google Scholar 

  45. Saad SA, Welles L, Abbas B, Lopez-Vazquez CM, Van Loosdrecht MCM, Brdjanovic D (2016) Denitrification of nitrate and nitrite by ‘Candidatus Accumulibacter phosphatis’ clade IC. Water Res 105:97–109. https://doi.org/10.1016/j.watres.2016.08.061

    CAS  Article  PubMed  Google Scholar 

  46. Schroeder S, Ahn J, Seviour RJ (2008) Ecophysiology of polyphosphate-accumulating organisms and glycogen-accumulating organisms in a continuously aerated enhanced biological phosphorus removal process. J Appl Microbiol 105(5):1412–1420. https://doi.org/10.1111/j.1365-2672.2008.03857.x

    CAS  Article  PubMed  Google Scholar 

  47. Schroeder S, Petrovski S, Campbell B, McIlroy S, Seviour R (2009) Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge. FEMS Microbiol Lett 297(2):157–163. https://doi.org/10.1111/j.1574-6968.2009.01676.x

    CAS  Article  PubMed  Google Scholar 

  48. Seviour RJ, Nielsen PH (2010) Microbial ecology of activated sludge. IWA Publishing, London

    Google Scholar 

  49. Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27(1):99–127. https://doi.org/10.1016/S0168-6445(03)00021-4

    CAS  Article  PubMed  Google Scholar 

  50. Shen N, Chen Y, Zhou Y (2017) Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature. Water Res 114:308–315. https://doi.org/10.1016/j.watres.2017.02.051

    CAS  Article  PubMed  Google Scholar 

  51. Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW (2015) Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Environ Microbiol 17(5):1574–1585. https://doi.org/10.1111/1462-2920.12582

    CAS  Article  PubMed  Google Scholar 

  52. Slater FR, Johnson CR, Blackall LL, Beiko RG, Bond PL (2010) Monitoring associations between clade level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP). Water Res 44(17):4908–4923. https://doi.org/10.1016/j.watres.2010.07.028

    CAS  Article  PubMed  Google Scholar 

  53. Smolders GJF, Van der Meij J, Van Loosdrecht MCM, Heijnen JJ (1994) Model of the anaerobic metabolism of the biological phosphorus removal process; stoichiometry and pH influence. Biotechnol Bioeng 43(6):461–470. https://doi.org/10.1002/bit.260430605

    CAS  Article  PubMed  Google Scholar 

  54. Smolders GJF, Van der Meij J, Van Loosdrecht MCM, Heijnen JJ (1995) A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorous removal process. Biotechnol Bioeng 47(3):277–287. https://doi.org/10.1002/bit.260470302

    CAS  Article  PubMed  Google Scholar 

  55. Vargas M, Casas C, Baeza JA (2009) Maintenance of phosphorus removal in an EBPR system under permanent aerobic conditions using propionate. Biochem Eng J 43(3):288–296. https://doi.org/10.1016/j.bej.2008.10.013

    CAS  Article  Google Scholar 

  56. Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8(2):e57923. https://doi.org/10.1371/journal.pone.0057923

    Article  PubMed  PubMed Central  Google Scholar 

  57. Welles L, Tian WD, Saad S, Abbas B, Lopez-Vazquez CM, Hooijmans CM, Van Loosdrecht MCM, Brdjanovic D (2015) Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake. Water Res 83:354–366. https://doi.org/10.1016/j.watres.2015.06.045

    CAS  Article  PubMed  Google Scholar 

  58. Welles L, Abbas B, Sorokin DY, Lopez-Vazquez CM, Hooijmans CM, Van Loosdrecht MCM, Brdjanovic D (2017) Metabolic response of “Candidatus Accumulibacter Phosphatis” clade IIC to changes in influent P/C ratio. Front Microbiol 7:2121. https://doi.org/10.3389/fmicb.2016.02121

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang AN, Mao Y, Zhang T (2016) Development of quantitative real-time PCR assays for different clades of “Candidatus Accumulibacter”. Sci Rep 6:23993. https://doi.org/10.1038/srep23993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Mr. Shizuo Furukawa, who helped set up the stirred tank system, and Dr. Mamoru Oshiki and Mr. Satoru Motooka, who helped measure the PHA. The Environmental Planning Bureau of the Yokohama City Government is acknowledged for the provision of activated sludge.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tadashi Nittami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nittami, T., Mukai, M., Uematsu, K. et al. Effects of different carbon sources on enhanced biological phosphorus removal and “Candidatus Accumulibacter” community composition under continuous aerobic condition. Appl Microbiol Biotechnol 101, 8607–8619 (2017). https://doi.org/10.1007/s00253-017-8571-3

Download citation

Keywords

  • Candidatus Accumulibacter”
  • Enhanced biological phosphorus removal (EBPR)
  • Polyhydroxyalkanoates (PHA)
  • Polyphosphate kinase gene (ppk)
  • Real-time qPCR