Skip to main content
Log in

Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To assess their potential as biopesticides, the effect on the growth of phytopathogen Fusarium oxysporum of six volatile organic compounds from endophytic fungi was studied in vivo and in vitro; compounds were used both as a mixture and individually. In vivo studies were performed inoculating the pathogen into cherry tomatoes, while the in vitro antifungal effect was studied using agar dilution and gas phase methods. Also, the morphology of the hyphae exposed to these compounds was analyzed. Moreover, the possible mechanism of action of these compounds was determined by studying the respiration and cell membrane permeability. Results show that the compounds have a significant concentration-dependent antifungal effect individually and act in a synergic manner. Additionally, changes in cell membrane permeability, damage to the hyphal morphology, and an inhibitory effect on the respiration were observed. The mixture of the six compounds may be used for postharvest control of F. oxysporum in tomatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ascencio-Álvarez A, López-Benítez A, Borrego-Escalante F, Rodríguez-Herrera SA, Flores-Olivas A, Jiménez-Díaz F, Gámez-Vázquez AJ (2008) Marchitez vascular del tomate: I. Presencia de razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología 26:114–120

    Google Scholar 

  • Bajpai VK, Kang SC (2012) In vitro and in vivo inhibition of plant pathogenic fungi by essential oil and extracts of Magnolia liliflora Desr. J Agric Sci Technol 14:845–856

    Google Scholar 

  • Booth E, Strobel G, Knighton B, Sears J, Geary B, Avci R (2011) A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives. Biotechnol Lett 33:1963–1972

    Article  CAS  PubMed  Google Scholar 

  • Dai JQ, Krohn K, Flörke U, Draeger S, Schulz B, Kiss-Szikszai A, Antus S, Kurtan T, van Ree T (2006) Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur J Org Chem 15:3498–3506

    Article  Google Scholar 

  • Deng L, Zhou Y, Zeng K (2015) Pre-harvest spray of oligochitosan induced the resistance of harvested navel oranges to anthracnose during ambient temperature storage. Crop Prot 70:70–76

    Article  CAS  Google Scholar 

  • Dimetry NZ (2014) Different plant families as bioresource for pesticides. In: Singh D (ed) Advances in plant biopesticides, 1st edn. Springer India, New Delhi, pp 1–20

    Google Scholar 

  • Ding T, Jiang T, Zhou J, Xu L, Gao ZM (2010) Evaluation of antimicrobial activity of endophytic fungi from Camptotheca acuminata (Nyssaceae). Genet Mol Res 9:2104–2112

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Ge C, Liu S, Chen C, Zhou M (2013) Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic Biochem Physiol 106:61–67

    Article  CAS  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Ezra D, Strobel G (2003) Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Sci 165:1229–1238

    Article  CAS  Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  • Gao XX, Zhou H, Xu DY, Yu CH, Chen YQ, Qu LH (2005) High diversity of endophytic fungi from the pharmaceutical plant, Heterosmilax japonica Kunth revealed by cultivation-independent approach. FEMS Microbiol Lett 249:255–266

    Article  CAS  PubMed  Google Scholar 

  • González I, Arias Y, Peteira B (2012) Aspectos generales de la interacción Fusarium oxysporum f. sp. lycopersici-tomate. Rev Protección Veg 27:1–7

    Google Scholar 

  • Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35:111–128

    Article  CAS  PubMed  Google Scholar 

  • Hensens OD, Ondeyka JG, Dombrowski AW, Ostlind DA, Zink DL (1999) Isolation and structure of nodulisporic acid A1 and A2, novel insecticides from Nodulisporium sp. Tetrahedron Lett 40:5455–5458

    Article  CAS  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Korpi A, Järnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, Iowa

    Book  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2012) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120

    Article  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131

    Article  PubMed  Google Scholar 

  • Meléndez-González C, Muriá-Gonzalez MJ, Anaya AL, Hernández-Bautista BE, Hernández-Ortega S, González MC, Glenn AE, Hanlin RT, Macías-Rubalcava ML (2015) Acremoxanthone E, a novel member of heterodimeric polyketides with a bicyclo[3.2.2]nonene ring, produced by Acremonium camptosporum W. Gams (Clavicipitaceae) endophytic fungus. Chem Biodivers 12:133–147

    Article  PubMed  Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31:1–8

    Article  Google Scholar 

  • Mercier J, Manker DC (2005) Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot 24:355–362

    Article  Google Scholar 

  • Mercier J, Smilanick JL (2005) Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol Control 32:401–407

    Article  Google Scholar 

  • Mo EK, Sung CK (2007) Phenylethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry. Postharvest Biol Technol 45:234–239

    Article  CAS  Google Scholar 

  • Peng L, Yang S, Cheng YJ, Chen F, Pan S, Fan G (2012) Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Sci Biotechnol 21:1533–1539

    Article  CAS  Google Scholar 

  • Pimenta RS, Silva JFM, Buyer JS, Janisiewicz WJ (2012) Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola. J Food Prot 75:1883–1889

    Article  CAS  PubMed  Google Scholar 

  • Ramin AA, Braun PG, Prange RK, DeLong JM (2005) In vitro effects of Muscodor albus and three volatile components on growth of selected postharvest microorganisms. Hortscience 40:2109–2114

    CAS  Google Scholar 

  • Sánchez-Fernández RE, Diaz D, Duarte G, Lappe-Oliveras P, Sánchez S, Macías-Rubalcava ML (2016) Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb Ecol 71:347–364

    Article  PubMed  Google Scholar 

  • Sánchez-Ortiz BL, Sánchez-Fernández RE, Duarte G, Lappe-Oliveras P, Macías-Rubalcava ML (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120:1313–1325

    Article  PubMed  Google Scholar 

  • Schotsmans WC, Braun G, DeLong JM, Prange RK (2008) Temperature and controlled atmosphere effects on efficacy of Muscodor albus as a biofumigant. Biol Control 44:101–110

    Article  Google Scholar 

  • Strobel G (2011) Muscodor species-endophytes with biological promise. Phytochem Rev 10:165–172

    Article  CAS  Google Scholar 

  • Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett 37:973–982

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN (2007) Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153:2613–2620

    Article  CAS  PubMed  Google Scholar 

  • Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70

    Article  CAS  Google Scholar 

  • Suwannarach N, Bussaban B, Nuangmek W, Pithakpol W, Jirawattanakul B, Matsui K, Lumyong S (2016) Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J Sci Food Agric 96:339–345

    Article  CAS  PubMed  Google Scholar 

  • Tanwar RS, Dureja P, Rathore HS (2012) Biopesticides. In: Rathore HS, Nollet LM (eds) Pesticides: evaluation of environmental pollution, 1st edn. CRC Press, Boca Raton, pp 587–603

    Chapter  Google Scholar 

  • Tian P, Nan Z, Li C, Spangenberg G (2008) Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. Eur J Plant Pathol 122:593–602

    Article  Google Scholar 

  • Ulloa-Benítez Á, Medina-Romero YM, Sánchez-Fernández RE, Lappe-Oliveras P, Roque-Flores G, Duarte Lisci G, Herrera Suárez T, Macías-Rubalcava ML (2016) Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J Appl Microbiol 121:380–400

    Article  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 17:5639–5641

    Article  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Article  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Wu ZC, Li DL, Chen YC, Zhang WM (2010) A new isofuranonaphthalenone and benzopyrans from endophytic fungus Nodulisporium sp. from Aquilaria sinensis. Helv Chim Acta 93:920–924

    Article  CAS  Google Scholar 

  • Yang S, Liu L, Li D, Xia H, Su X, Peng L, Pan S (2016) Use of active extracts of poplar buds against Penicillium italicum and possible modes of action. Food Chem 196:610–618

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (2010) Biostatiticial analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants CONACyT 179194 and DGAPA-UNAM IN207117. Yoli Mariana Medina-Romero is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 239871 from CONACYT. We wish to thank Dra. Bertha Tlapal Bolaños from Instituto de Fitosanidad, Colegio de Postgraduados, Montecillo, Estado de México, for the donation of the plant pathogenic microorganism used in the bioassays and to Dra. Elizabeth K. Galván Miranda from Facultad de Química, UNAM, for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lydia Macías-Rubalcava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Taken in part from the PhD thesis of Y. M. Medina-Romero

Electronic supplementary material

ESM 1

(PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Romero, Y.M., Roque-Flores, G. & Macías-Rubalcava, M.L. Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Appl Microbiol Biotechnol 101, 8209–8222 (2017). https://doi.org/10.1007/s00253-017-8542-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8542-8

Keywords

Navigation