Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 23–24, pp 8353–8363 | Cite as

Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure

  • Tomohiko MatsuzawaEmail author
  • Masahiro Watanabe
  • Katsuro YaoiEmail author
Biotechnologically relevant enzymes and proteins

Abstract

MeBglD2, a metagenomic β-glycosidase, is stimulated by various saccharides, including d-glucose, d-xylose, and maltose, and it promotes the enzymatic saccharification of plant biomass. To improve the thermostability of MeBglD2, its X-ray crystal structure was analyzed, and the amino acid residues responsible for its thermostability were identified using the structural information. Mutations in His8, Asn59, and Gly295 improved the thermostability of MeBglD2, and the combination of these mutations resulted in the highest thermostability. Compared with wild-type MeBglD2, thermostable MeBglD2 mutants promoted plant biomass saccharification using Trichoderma reesei cellulase. In addition to thermostability, the thermostable mutants exhibited higher tolerance to ethanol, dimethyl sulfoxide, and copper ions, indicating that the MeBglD2 mutants generated in this study were improved in their tolerance to not only high temperature but also to organic solvents and metal ions.

Keywords

β-glycosidase Metagenome Biomass Thermostabilization 

Notes

Acknowledgements

The alkaline-treated rice straw was kindly provided by Dr. Yoshinori Kobayashi (Japan Bioindustry Association). The X-ray diffraction data were obtained at Beam Line BL44XU at SPring-8, Hyogo, Japan, with approval of the Institute for Protein Research, Osaka University, Osaka, Japan (proposal nos. 2016A6657 and 2016B6657).

Funding

This study was funded by JSPS KAKENHI (Grant-in-Aid for Young Scientists B, Grant No. 26850067).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study did not involve any human participants or animals.

Supplementary material

253_2017_8525_MOESM1_ESM.pdf (100 kb)
ESM 1 (PDF 100 kb)

References

  1. Baba Y, Sumitani JI, Tani S, Kawaguchi T (2015) Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma reesei. AMB Express 5:3CrossRefPubMedPubMedCentralGoogle Scholar
  2. Biely P, Vrsanská M, Claeyssens M (1991) The endo-1,4-β-glucanase I from Trichoderma reesei. Action on β-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur J Biochem 200:157–163CrossRefPubMedGoogle Scholar
  3. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D: Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  4. Del Pozo MV, Fernández-Arrojo L, Gil-Martinez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN (2012) Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 5:73CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dion M, Fourage L, Hallet JN, Colas B (1999) Cloning and expression of a β-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj J 16:27–37CrossRefPubMedGoogle Scholar
  6. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D: Biol Crystallogr 60:2126–2132CrossRefGoogle Scholar
  7. Fenel F, Zitting AJ, Kantelinen A (2006) Increased alkali stability in Trichoderma reesei endo-1,4-β-xylanase II by site directed mutagenesis. J Biotechnol 121:102–107CrossRefPubMedGoogle Scholar
  8. Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SP (2014) Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels 7:175CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hokanson CA, Cappuccilli G, Odineca T, Bozic M, Behnke CA, Mendez M, Coleman WJ, Crea R (2011) Engineering highly thermostable xylanase variants using an enhanced combinatorial library methods. Protein Eng Des Sel 24:597–605CrossRefPubMedGoogle Scholar
  10. Jabbour D, Klippel B, Antranikian G (2012) A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Appl Microbiol Biotechnol 93:1947–1956CrossRefPubMedGoogle Scholar
  11. Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C (2009) Thermostable carbohydrate binding module increases the thermostability and substrate-binding capacity of Trichoderma reesei xylanase 2. New Biotechnol 26:53–59CrossRefGoogle Scholar
  12. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li H, Murtomäki L, Leisola M, Turunen O (2012) The effect of thermostabilising mutations on the pressure stability of Trichoderma reesei GH11 xylanase. Protein Eng Des Sel 25:821–826CrossRefPubMedGoogle Scholar
  14. Li YY, Zhong KX, Hu AH, Liu DN, Chen LZ, Xu SD (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif 108:90–96CrossRefPubMedGoogle Scholar
  15. Liebl W, Gabelsberger J, Schleifer KH (1994) Comparative amino acid sequence analysis of Thermotoga maritima β-glucosidase BglA deduced from the nucleotide sequence of the gene indicates distant relationship between β-glucosidase of the BGA family and other families of β-1 4-glycosyl hydrolases. Mol Gen Genet 242:111–115PubMedGoogle Scholar
  16. Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu K (2013) Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol 146:478–484CrossRefPubMedGoogle Scholar
  17. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: Φ, Ψ and Cβ deviation. Proteins 50:437–450CrossRefPubMedGoogle Scholar
  18. Matsuzawa T, Yaoi K (2017) Screening, identification, and characterization of a novel saccharide-stimulated β-glucosidase from a soil metagenomic library. Appl Microbiol Biotechnol 101:633–646CrossRefPubMedGoogle Scholar
  19. Matsuzawa T, Kaneko S, Yaoi K (2015) Screening, identification, and characterizatio of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome. Appl Microbiol Biotechnol 99:8943–8954CrossRefPubMedGoogle Scholar
  20. Matsuzawa T, Jo T, Uchiyama T, Manninen JA, Arakawa T, Miyazaki K, Fushinobu S, Yaoi K (2016a) Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase Td2F2. FEBS J 283:2340–2353CrossRefPubMedGoogle Scholar
  21. Matsuzawa T, Kaneko S, Yaoi K (2016b) Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 100:8043–8051CrossRefPubMedGoogle Scholar
  22. Matsuzawa T, Kimura N, Suenaga H, Yaoi K (2016c) Screening, identification, and characterization of α-xylosidase from a soil metagenome. J Biosci Bioeng 122:393–399CrossRefPubMedGoogle Scholar
  23. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497CrossRefPubMedGoogle Scholar
  24. McCoy AJ, Grosse-Kunstieve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674CrossRefPubMedPubMedCentralGoogle Scholar
  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  26. Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P (2013) Product inhibition of five Hypocrea jecorina cellulases. Enzym Microb Technol 52:163–169CrossRefGoogle Scholar
  27. Murshudov GN, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D: Biol Crystallogr 67:355–367CrossRefGoogle Scholar
  28. Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass coversion. Biotechnol Bioeng 109:92–99CrossRefPubMedGoogle Scholar
  29. Nummi M, Niku-Paavola ML, Lappalainen A, Enari TM, Raunio V (1983) Cellobiohydrolase from Trichoderma reesei. Biochem J 215:677–683CrossRefPubMedPubMedCentralGoogle Scholar
  30. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  31. Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M (2004) Developments in the CCP4 molecular graphics project. Acta Crystallogr D Biol Crystallogr 60:2288–2294CrossRefPubMedGoogle Scholar
  32. Pribowo A, Arantes V, Saddler JN (2012) The absorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzym Microb Technol 50:195–203CrossRefGoogle Scholar
  33. Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P (2015) Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol 42:553–565CrossRefPubMedGoogle Scholar
  34. Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Ståhlberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JK (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63:11–22CrossRefPubMedGoogle Scholar
  35. Senisterra GA, Finerty PJ Jr (2009) High throughput methods of assessing protein stability and aggregation. Mol BioSyst 5:217–223CrossRefPubMedGoogle Scholar
  36. Sørensen A, Lübeck M, Lübeck PS, Ahring BK (2013) Fungal β-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomol Ther 3:612–631Google Scholar
  37. Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178CrossRefPubMedGoogle Scholar
  38. Teugjas H, Väljamäe P (2013) Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol Biofuels 6:105CrossRefPubMedPubMedCentralGoogle Scholar
  39. Teze D, Hendrickx J, Czjzek M, Ropartz D, Sanejouand YH, Tran V, Tellier C, Dion M (2014) Semi-rational approach for converting a GH1 β-glycosidase into a β-transglycosidase. Protein Eng Des Sel 27:13–19Google Scholar
  40. Turunen O, Vuorio M, Fenel F, Leisola M (2002) Engineering of multiple arginines into Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng 15:141–145CrossRefPubMedGoogle Scholar
  41. Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M (2012) Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant β-glucosidase from the termite Nasutitermes takasagoensis. Appl Environ Microbiol 78:4288–4293CrossRefPubMedPubMedCentralGoogle Scholar
  42. Uchiyama T, Miyazaki K, Yaoi K (2013) Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem 288:18325–18334CrossRefPubMedPubMedCentralGoogle Scholar
  43. Uchiyama T, Yaoi K, Miyazaki K (2015) Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Front Microbiol 5:548Google Scholar
  44. Várnai A, Viikari L, Marjamaa K, Siika-aho M (2011) Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 102:1220–1227CrossRefPubMedGoogle Scholar
  45. Watanabe M, Inoue H, Inoue B, Yoshimi M, Fujii T, Ishikawa K (2014) Xylanase (GH11) from Acremonium cellulolyticus: homologous expression and characterization. AMB Express 4:27CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110:1874–1883CrossRefPubMedGoogle Scholar
  47. Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 115:1115–1126CrossRefGoogle Scholar
  48. Xiong H, Fenel F, Leisola M, Turunen O (2004) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide binding. Extremophiles 8:393–400CrossRefPubMedGoogle Scholar
  49. Yang F, Yang X, Li Z, Du C, Wang J, Li S (2015) Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol 99:8903–8915CrossRefPubMedGoogle Scholar
  50. Yernool DA, McCarthy JK, Eveleigh DE, Bok JD (2000) Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol 182:5172–5179CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zechel DL, Boraston AB, Gloster T, Boraston CM, Macdonald JM, Tilbrook DM, Stick RV, Davies GJ (2003) Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to β-glucosidases. J Am Chem Soc 125:14313–14323CrossRefPubMedGoogle Scholar
  52. Zouari Ayadi D, Hmida Sayari A, Ben Mabrouk S, Mezghani M, Bejar S (2015) Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations. Int J Biol Macromol 72:163–170CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
  2. 2.Biomass Refinery Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)Higashi-HiroshimaJapan
  3. 3.Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)Higashi-HiroshimaJapan

Personalised recommendations