The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii

Abstract

Cellulolytic microorganisms play important roles in global carbon cycling and have evolved diverse strategies to digest cellulose. Some are ‘generous,’ releasing soluble sugars from cellulose extracellularly to feed both themselves and their neighbors. The gliding soil bacterium Cytophaga hutchinsonii exhibits a more ‘selfish’ strategy. It digests crystalline cellulose using cell-associated cellulases and releases little soluble sugar outside of the cell. The mechanism of C. hutchinsonii cellulose utilization is still poorly understood. In this review, we discuss novel aspects of the C. hutchinsonii cellulolytic system. Recently developed genetic manipulation tools allowed the identification of proteins involved in C. hutchinsonii cellulose utilization. These include periplasmic and cell-surface endoglucanases and novel cellulose-binding proteins. The recently discovered type IX secretion system is needed for cellulose utilization and appears to deliver some of the cellulolytic enzymes and other proteins to the cell surface. The requirement for periplasmic endoglucanases for cellulose utilization is unusual and suggests that cello-oligomers must be imported across the outer membrane before being further digested. Cellobiohydrolases or other predicted processive cellulases that play important roles in many other cellulolytic bacteria appear to be absent in C. hutchinsonii. Cells of C. hutchinsonii attach to and glide along cellulose fibers, which may allow them to find sites most amenable to attack. A model of C. hutchinsonii cellulose utilization summarizing recent progress is proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agarwal S, Hunnicutt DW, McBride MJ (1997) Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A 94:12139–12144

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Alvarez B, Secades P, McBride MJ, Guijarro JA (2004) Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 70(1):581–587. https://doi.org/10.1128/AEM.70.1.581-587.2004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Artzi L, Dassa B, Borovok I, Shamshoum M, Lamed R, Bayer EA (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100. https://doi.org/10.1186/1754-6834-7-100

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Artzi L, Bayer EA, Morais S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15(2):83–95. https://doi.org/10.1038/nrmicro.2016.164

    CAS  PubMed  Article  Google Scholar 

  5. Bai X, Wang X, Wang S, Ji X, Guan Z, Zhang W, Lu X (2017) Functional studies of β-glucosidases of Cytophaga hutchinsonii and their effects on cellulose degradation. Front Microbiol 8:1-13. https://doi.org/10.3389/fmicb.2017.00140

  6. Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayer EA, Shimon LJW, Shoham Y, Lamed R (1998) Cellulosomes—structure and ultrastructure. J Struct Biol 124:221–234

    CAS  PubMed  Article  Google Scholar 

  8. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    CAS  PubMed  Article  Google Scholar 

  9. Beguin P, Lemaire M (1996) The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Molec Biol 31:201–236

    CAS  Article  Google Scholar 

  10. Braun TF, Khubbar MK, Saffarini DA, McBride MJ (2005) Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 187:6943–6952

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516. https://doi.org/10.1126/science.1244273

    CAS  PubMed  Article  Google Scholar 

  12. Burnet MC, Dohnalkova AC, Neumann AP, Lipton MS, Smith RD, Suen G, Callister SJ (2015) Evaluating models of cellulose degradation by Fibrobacter succinogenes S85. PLoS One 10:e0143809. https://doi.org/10.1371/journal.pone.0143809

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Chang WTH, Thayer DW (1977) The cellulase system of a Cytophaga species. Can J Microbiol 23:1285–1292

    CAS  PubMed  Article  Google Scholar 

  14. Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED (2007) Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 189:5108–5118

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Cordova CM, Lartigue C, Sirand-Pugnet P, Renaudin J, Cunha RA, Blanchard A (2002) Identification of the origin of replication of the Mycoplasma pulmonis chromosome and its use in oriC replicative plasmids. J Bacteriol 184:5426–5435

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Cuskin F, Lowe EC, Temple MJ, Zhu YP, Cameron EA, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A (2015) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517:165–169. https://doi.org/10.1038/nature13995

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Devillard E, Goodheart DB, Karnati SK, Bayer EA, Lamed R, Miron J, Nelson KE, Morrison M (2004) Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol 186:136–145

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Doi RH, Goldstein M, Hashida S, Park JS, Takagi M (1994) The Clostridium cellulovorans cellulosome. Crit Rev Microbiol 20:87–93

    CAS  PubMed  Article  Google Scholar 

  19. Duret S, Danet JL, Garnier M, Renaudin J (1999) Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 181:7449–7456

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Filippini M, Qi W, Blom J, Goesmann A, Smits TH, Bagheri HC (2012) Genome sequence of Fibrella aestuarina BUZ 2(T), a filamentous marine bacterium. J Bacteriol 194:3555. https://doi.org/10.1128/jb.00550-12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Forsberg Z, Mackenzie AK, Sorlie M, Rohr AK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111:8446–8451. https://doi.org/10.1073/pnas.1402771111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Gardner JG, Keating DH (2010) Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus. Appl Environ Microbiol 76:5079–5087. https://doi.org/10.1128/aem.00454-10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185:391–398

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore C, Crawford S, Reynolds E (2012) PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 287:24605–24617

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Gong J, Forsberg CW (1989) Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl Environ Microbiol 55:3039–3044

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gong J, Egbosimba EE, Forsberg CW (1996) Cellulose-binding proteins of Fibrobacter succinogenes and the possible role of a 180-kDa cellulose-binding glycoprotein in adhesion to cellulose. Can J Microbiol 42:453–460. https://doi.org/10.1139/m96-062

    CAS  Article  Google Scholar 

  28. Haq I, Akram F, Khan MA, Hussain Z, Nawaz A, Iqbal K, Shah AJ (2015) CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies. World J Microbiol Biotechnol 31:1699–1710. https://doi.org/10.1007/s11274-015-1920-4

    PubMed  Article  CAS  Google Scholar 

  29. Harchand RK, Singh S (1997) Extracellular cellulase system of a thermotolerant streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229–239

    CAS  PubMed  Google Scholar 

  30. Jeon SD, Yu KO, Kim SW, Han SO (2012) The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnol 29:365–371. https://doi.org/10.1016/j.nbt.2011.06.008

    CAS  Article  Google Scholar 

  31. Ji X, Xu Y, Zhang C, Chen N, Lu X (2012) A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96:161–170. https://doi.org/10.1007/s00253-012-4051-y

    CAS  PubMed  Article  Google Scholar 

  32. Ji X, Bai X, Li Z, Wang S, Guan Z, Lu X (2013) A novel locus essential for spreading of Cytophaga hutchinsonii colonies on agar. Appl Microbiol Biotechnol 97:7317–7324. https://doi.org/10.1007/s00253-013-4820-2

    CAS  PubMed  Article  Google Scholar 

  33. Ji X, Wang Y, Zhang C, Bai X, Zhang W, Lu X (2014) Novel outer membrane protein involved in cellulose and cellooligosaccharide degradation by Cytophaga hutchinsonii. Appl Environ Microbiol 80:4511–4518. https://doi.org/10.1128/aem.00687-14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Jun HS, Qi M, Gong J, Egbosimba EE, Forsberg CW (2007) Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J Bacteriol 189:6806–6815. https://doi.org/10.1128/jb.00560-07

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Kharade SS, McBride MJ (2015) Flavobacterium johnsoniae PorV is required for secretion of a subset of proteins targeted to the type IX secretion system. J Bacteriol 197:147–158. https://doi.org/10.1128/jb.02085-14

    PubMed  Article  CAS  Google Scholar 

  36. Kita D, Shibata S, Kikuchi Y, Kokubu E, Nakayama K, Saito A, Ishihara K (2016) Involvement of the type IX secretion system in Capnocytophaga ochracea gliding motility and biofilm formation. Appl Environ Microbiol 82:1756–1766. https://doi.org/10.1128/aem.03452-15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Koropatkin NM, Martens EC, Gordon JI, Smith TJ (2008) Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16:1105–1115

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Kudo H, Cheng KJ, Costerton JW (1987) Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Microbiol 33:267–272

    CAS  PubMed  Article  Google Scholar 

  39. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng JF, Lucas S, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Brettin T, Detter JC, Schutze A, Rohde M, Tindall BJ, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Chen F (2010) Complete genome sequence of Spirosoma linguale type strain (1). Stand Genomic Sci 2:176–185. https://doi.org/10.4056/sigs.741334

    PubMed  PubMed Central  Article  Google Scholar 

  40. Larkin JM (1989) Nonphotosynthetic, nonfruiting gliding bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2010–2138

    Google Scholar 

  41. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM (2014) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506:498–502. https://doi.org/10.1038/nature12907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride MJ, Pope PB (2016) A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels 9:260. https://doi.org/10.1186/s13068-016-0674-z

    PubMed  PubMed Central  Article  Google Scholar 

  43. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. https://doi.org/10.1186/1754-6834-6-41

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Li L-Y, Shoemaker NB, Salyers AA (1995) Location and characterization of the transfer region of a Bacteroides conjugative transposon and regulation of the transfer genes. J Bacteriol 177:4992–4999

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172. https://doi.org/10.1128/aem.02960-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Li Z, Zhang C, Wang S, Cao J, Zhang W, Lu X (2015) A new locus in Cytophaga hutchinsonii involved in colony spreading on agar surfaces and individual cell gliding. FEMS Microbiol Lett 362(14):1-8. https://doi.org/10.1093/femsle/fnv095

  47. Lochner A, Giannone RJ, Rodriguez M Jr, Shah MB, Mielenz JR, Keller M, Antranikian G, Graham DE, Hettich RL (2011) Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol 77:4042–4054. https://doi.org/10.1128/aem.02811-10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Mackenzie AK, Pope PB, Pedersen HL, Gupta R, Morrison M, Willats WG, Eijsink VG (2012) Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant Bacteroidetes phylotype bind strongly to cellulose. Appl Environ Microbiol 78:5935–5937. https://doi.org/10.1128/aem.01164-12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Maley J, Shoemaker NB, Roberts IS (1992) The introduction of colonic-Bacteroides shuttle plasmids into Porphyromonas gingivalis: identification of a putative P. gingivalis insertion-sequence element. FEMS Microbiol Lett 72:75–81

    CAS  PubMed  Article  Google Scholar 

  51. Mally M, Cornelis GR (2008) Genetic tools for studying Capnocytophaga canimorsis. Appl Environ Microbiol 74:6369–6377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284:24673–24677

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62:3017–3022

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McBride MJ, Kempf MJ (1996) Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178:583–590

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. McBride MJ, Zhu Y (2013) Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195:270–278

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. McBride MJ, Liu W, Lu X, Zhu Y, Zhang W (2014) The family Cytophagaceae. In: Rosenberg E, Stackebrandt E, DeLong E, Lory S, Thompson FL (eds) The prokaryotes, 4th edn. Springer, New York, pp 577–593

    Google Scholar 

  58. Miron J, Forsberg CW (1999) Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7. Appl Microbiol Biotechnol 51:491–497

    CAS  PubMed  Article  Google Scholar 

  59. Miron J, Ben-Ghedalia D, Morrison M (2001) Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84(6):1294–1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2

    CAS  PubMed  Article  Google Scholar 

  60. Monteiro PB, Teixeira DC, Palma RR, Garnier M, Bove JM, Renaudin J (2001) Stable transformation of the Xylella fastidiosa citrus variegated chlorosis strain with oriC plasmids. Appl Environ Microbiol 67:2263–2269. https://doi.org/10.1128/aem.67.5.2263-2269.2001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Naas AE, Mackenzie AK, Mravec J, Schuckel J, Willats WGT, Eijsink VGH, Pope PB (2014) Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation. mBio 5(4):1-6. https://doi.org/10.1128/mBio.01401-14

  62. Natale P, Bruser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756. https://doi.org/10.1016/j.bbamem.2007.07.015

    CAS  PubMed  Article  Google Scholar 

  63. Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ (2007) Flavobacterium johnsoniae SprA is a cell-surface protein involved in gliding motility. J Bacteriol 189:7145–7150

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Pagani I, Chertkov O, Lapidus A, Lucas S, Del Rio TG, Tice H, Copeland A, Cheng JF, Nolan M, Saunders E, Pitluck S, Held B, Goodwin L, Liolios K, Ovchinikova G, Ivanova N, Mavromatis K, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Detter JC, Han C, Tapia R, Ngatchou-Djao OD, Rohde M, Goker M, Spring S, Sikorski J, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC (2011) Complete genome sequence of Marivirga tractuosa type strain (H-43). Stand Genomic Sci 4:154–162. https://doi.org/10.4056/sigs.1623941

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Park YN, Masison D, Eisenberg E, Greene LE (2011) Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28:673–681. https://doi.org/10.1002/yea.1895

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Pelicic V, Reyrat JM, Gicquel B (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Perez-Pascual D, Gomez E, Alvarez B, Mendez J, Reimundo P, Navais R, Duchaud E, Guijarro JA (2011) Comparative analysis and mutation effects of fpp2-fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum. Microbiology 157:1196–1204. https://doi.org/10.1099/mic.0.046938-0

    CAS  PubMed  Article  Google Scholar 

  68. Raut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC (2015) Influence of substrates on the surface characteristics and membrane proteome of Fibrobacter succinogenes S85. PLoS One 10:e0141197. https://doi.org/10.1371/journal.pone.0141197

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179:643–649

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Rhodes RG, Samarasam MN, Shrivastava A, van Baaren JM, Pochiraju S, Bollampalli S, McBride MJ (2010) Flavobacterium johnsoniae gldN and gldO are partially redundant genes required for gliding motility and surface localization of SprB. J Bacteriol 192:1201–1211

    CAS  PubMed  Article  Google Scholar 

  71. Rhodes RG, Nelson SS, Pochiraju S, McBride MJ (2011a) Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 193:599–610

    CAS  PubMed  Article  Google Scholar 

  72. Rhodes RG, Pucker HG, McBride MJ (2011b) Development and use of a gene deletion strategy for Flavobacterium johnsoniae to identify the redundant motility genes remF, remG, remH, and remI. J Bacteriol 193:2418–2428

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Rhodes RG, Samarasam MN, Van Groll EJ, McBride MJ (2011c) Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol 193:5322–5327. https://doi.org/10.1128/JB.05480-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–246

    CAS  PubMed  Article  Google Scholar 

  75. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107:276–281

    CAS  PubMed  Article  Google Scholar 

  76. Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182:5365–5372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Shoemaker NB, Guthrie EP, Salyers AA, Gardner JF (1985) Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element. J Bacteriol 162:626–632

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shrivastava A, Johnston JJ, van Baaren JM, McBride MJ (2013) Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell-surface gliding motility adhesins SprB and RemA. J Bacteriol 195:3201–3212. https://doi.org/10.1128/JB.00333-13

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Smith CJ, Rogers MB, McKee ML (1992) Heterologous gene expression in Bacteroides fragilis. Plasmid 27:141–154

    CAS  PubMed  Article  Google Scholar 

  80. Stanier RY (1942) The cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6:143–196

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 6:e18814. https://doi.org/10.1371/journal.pone.0018814

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Taylor LE II, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Terrapon N, Lombard V, Gilbert HJ, Henrissat B (2015) Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31(5):647-655. https://doi.org/10.1093/bioinformatics/btu716

  84. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2:93. https://doi.org/10.3389/fmicb.2011.00093

    PubMed  PubMed Central  Article  Google Scholar 

  85. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. https://doi.org/10.1126/science.1192231

    CAS  PubMed  Article  Google Scholar 

  86. Veith PD, Nor Muhammad NA, Dashper SG, Likic VA, Gorasia DG, Chen D, Byrne SJ, Catmull DV, Reynolds EC (2013) Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification, and cell-surface attachment. J Proteome Res 12:4449–4461. https://doi.org/10.1021/pr400487b

    CAS  PubMed  Article  Google Scholar 

  87. Vermaas JV, Crowley MF, Beckham GT, Payne CM (2015) Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B 119:6129–6143. https://doi.org/10.1021/acs.jpcb.5b00778

    CAS  PubMed  Article  Google Scholar 

  88. Wang Y, Wang Z, Cao J, Guan Z, Lu X (2014) FLP-FRT-based method to obtain unmarked deletions of CHU_3237 (porU) and large genomic fragments of Cytophaga hutchinsonii. Appl Environ Microbiol 80:6037–6045. https://doi.org/10.1128/aem.01785-14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. Wang S, Zhao D, Bai X, Zhang W, Lu X (2017) Identification and characterization of a large protein essential for degradation of the crystalline region of cellulose by Cytophaga hutchinsonii. Appl Environ Microbiol 83(1):1-16. https://doi.org/10.1128/aem.02270-16

  90. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705. https://doi.org/10.1128/jb.00481-09

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Weimer PJ, Price NP, Kroukamp O, Joubert LM, Wolfaardt GM, Van Zyl WH (2006) Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7. Appl Environ Microbiol 72:7559–7566. https://doi.org/10.1128/aem.01632-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Wilson DB (1992) Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol 12:45–63

    CAS  PubMed  Article  Google Scholar 

  93. Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Annals N Y Acad Sci 1125:289–297

    CAS  Article  Google Scholar 

  94. Wilson DB (2009) Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16(4):723–727

    CAS  Article  Google Scholar 

  95. Winogradsky S (1929) Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. Ann inst Pasteur 43:549–633

  96. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Xu Y, Ji X, Chen N, Li P, Liu W, Lu X (2012) Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 93:697–705. https://doi.org/10.1007/s00253-011-3572-0

    CAS  PubMed  Article  Google Scholar 

  98. Yang T, Bu X, Han Q, Wang X, Zhou H, Chen G, Zhang W, Liu W (2016) A small periplasmic protein essential for Cytophaga hutchinsonii cellulose digestion. Appl Microbiol Biotechnol 100(4):1935–1944. https://doi.org/10.1007/s00253-015-7204-y

    CAS  PubMed  Article  Google Scholar 

  99. Young J, Chung D, Bomble YJ, Himmel ME, Westpheling J (2014) Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Biotechnol Biofuels 7(1):142. https://doi.org/10.1186/s13068-014-0142-6

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. Zhang C, Wang Y, Li Z, Zhou X, Zhang W, Zhao Y, Lu X (2014) Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 98(15):6679–6687. https://doi.org/10.1007/s00253-014-5640-8

    CAS  PubMed  Article  Google Scholar 

  101. Zhang C, Zhang W, Lu X (2015) Expression and characteristics of a Ca2+-dependent endoglucanase from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 99(22):9617–9623. https://doi.org/10.1007/s00253-015-6746-3

    CAS  PubMed  Article  Google Scholar 

  102. Zhang C, Wang X, Zhang W, Zhao Y, Lu X (2017) Expression and characterization of a glucose-tolerant beta-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 101(5):1919–1926. https://doi.org/10.1007/s00253-016-7927-4

    CAS  PubMed  Article  Google Scholar 

  103. Zhou H, Wang X, Yang T, Zhang W, Chen G, Liu W (2015) Identification and characterization of a novel locus in Cytophaga hutchinsonii involved in colony spreading and cellulose digestion. Appl Microbiol Biotechnol 99:4321–4331. https://doi.org/10.1007/s00253-015-6412-9

    CAS  PubMed  Article  Google Scholar 

  104. Zhou H, Wang X, Yang T, Zhang W, Chen G, Liu W (2016) An outer membrane protein involved in the uptake of glucose is essential for Cytophaga hutchinsonii cellulose utilization. Appl Environ Microbiol 82:1933–1944. https://doi.org/10.1128/aem.03939-15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Zhu Y, McBride MJ (2014) Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98(2):763–775. https://doi.org/10.1007/s00253-013-5355-2

    CAS  PubMed  Article  Google Scholar 

  106. Zhu Y, McBride MJ (2016) Comparative analysis of Cellulophaga algicola and Flavobacterium johnsoniae gliding motility. J Bacteriol 198:1743–1754. https://doi.org/10.1128/jb.01020-15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Zhu Y, Li H, Zhou H, Chen G, Liu W (2010) Cellulose and cellulodextrin utilization by the cellulolytic bacterium Cytophaga hutchinsonii. Bioresour Technol 101:6432–6437

    CAS  PubMed  Article  Google Scholar 

  108. Zhu Y, Zhou H, Bi Y, Zhang W, Chen G, Liu W (2013) Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Appl Microbiol Biotechnol 97:3925–3937. https://doi.org/10.1007/s00253-012-4259-x

    CAS  PubMed  Article  Google Scholar 

  109. Zhu Y, Kwiatkowski KJ, Yang T, Kharade SS, Bahr CM, Koropatkin NM, Liu W, McBride MJ (2015) Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization. Appl Microbiol Biotechnol 99(15):6339–6350. https://doi.org/10.1007/s00253-015-6555-8

    CAS  PubMed  Article  Google Scholar 

  110. Zhu Y, Han L, Hefferon KL, Silvaggi NR, Wilson DB, McBride MJ (2016) Periplasmic Cytophaga hutchinsonii endoglucanases are required for use of crystalline cellulose as the sole source of carbon and energy. Appl Environ Microbiol 82:4835–4845. https://doi.org/10.1128/aem.01298-16

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Zhu Y, Thomas F, Larocque R, Li N, Duffieux D, Cladière L, Souchaud F, Michel G, McBride MJ (2017) Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environ Microbiol 19(6):2164–2181. https://doi.org/10.1111/1462-2920.13699

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This work was supported by grant MCB-1516990 from the National Science Foundation and by a University of WI-Milwaukee Research Growth Initiative Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongtao Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., McBride, M.J. The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii . Appl Microbiol Biotechnol 101, 7113–7127 (2017). https://doi.org/10.1007/s00253-017-8467-2

Download citation

Keywords

  • Cytophaga hutchinsonii
  • Cellulose digestion
  • Cellulase
  • Genetic tools
  • Gliding motility
  • Type IX secretion system