Applied Microbiology and Biotechnology

, Volume 101, Issue 18, pp 6951–6968 | Cite as

Functional and structural characterization of synthetic cardosin B-derived rennet

  • Carla Malaquias Almeida
  • José A. Manso
  • Ana C. Figueiredo
  • Liliana Antunes
  • Rui Cruz
  • Bruno Manadas
  • Daniel Bur
  • Pedro José Barbosa Pereira
  • Carlos Faro
  • Isaura Simões
Biotechnologically Relevant Enzymes and Proteins

Abstract

The potential of using a synthetic cardosin-based rennet in cheese manufacturing was recently demonstrated with the development and optimization of production of a recombinant form of cardosin B in Kluyveromyces lactis. With the goal of providing a more detailed characterization of this rennet, we herein evaluate the impact of the plant-specific insert (PSI) on cardosin B secretion in this yeast, and provide a thorough analysis of the specificity requirements as well as the biochemical and structural properties of the isolated recombinant protease. We demonstrate that the PSI domain can be substituted by different linker sequences without substantially affecting protein secretion and milk clotting activity. However, the presence of small portions of the PSI results in dramatic reductions of secretion yields in this heterologous system. Kinetic characterization and specificity profiling results clearly suggest that synthetic cardosin B displays lower catalytic efficiency and is more sequence selective than native cardosin B. Elucidation of the structure of synthetic cardosin B confirms the canonical fold of an aspartic protease with the presence of two high mannose-type, N-linked glycan structures; however, there are some differences in the conformation of the flap region when compared to cardosin A. These subtle variations in catalytic properties and the more stringent substrate specificity of synthetic cardosin B help to explain the observed suitability of this rennet for cheese production.

Keywords

PSI Aspartic protease Glycosylation Kluyveromyces lactis Cardosin B Rennet Milk clotting Specificity 3D structure 

Notes

Acknowledgments

This work was funded by Fundo Europeu de Desenvolvimento Regional (FEDER) Funds through the Operational Competitiveness Programme (COMPETE) and by National Funds through Fundação para a Ciência e a Tecnologia (FCT) under projects PTDC/AGR-ALI/102540/2008 and POCI-01-0145-FEDER-007274. Support by the “Structured program on bioengineered therapies for infectious diseases and tissue regeneration” (Norte-01-0145-FEDER-000012), funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through FEDER is also acknowledged. The authors would like to acknowledge the strategic project UID/NEU/04539/2013 and the National Mass Spectrometry Network (RNEM) under the contract REDE/1506/REM/2005. Edman sequencing data were obtained by the Analytical Laboratory, Analytical Services Unit, Instituto de Tecnologia Quıímica e Biológica, Universidade Nova de Lisboa. We acknowledge the ESRF for provision of synchrotron radiation facilities and thank the ESRF staff for the help with data collection. The authors would like to thank Sandra Isabel Anjo for her inputs on acquisition of MS data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8445_MOESM1_ESM.pdf (588 kb)
ESM 1 (PDF 587 kb)

References

  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agirre J, Iglesias-Fernandez J, Rovira C, Davies GJ, Wilson KS, Cowtan KD (2015) Privateer: software for the conformational validation of carbohydrate structures. Nat Struct Mol Biol 22:833–834CrossRefPubMedGoogle Scholar
  3. Ahn J, Cao MJ, Yu YQ, Engen JR (2013) Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta 1834:1222–1229CrossRefPubMedGoogle Scholar
  4. Almeida CM, Gomes D, Faro C, Simoes I (2015) Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl Microbiol Biotechnol 99:269–281CrossRefPubMedGoogle Scholar
  5. Anjo SI, Santa C, Manadas B (2015) Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics 15:757–762CrossRefPubMedGoogle Scholar
  6. Arnold D, Keilholz W, Schild H, Dumrese T, Stevanovic S, Rammensee HG (1997) Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools. Eur J Biochem 249:171–179CrossRefPubMedGoogle Scholar
  7. Asakura T, Matsumoto I, Funaki J, Arai S, Abe K (2000) The plant aspartic proteinase-specific polypeptide insert is not directly related to the activity of oryzasin 1. Eur J Biochem 267:5115–5122CrossRefPubMedGoogle Scholar
  8. Beyer BB, Johnson JV, Chung AY, Li T, Madabushi A, Agbandje-McKenna M, McKenna R, Dame JB, Dunn BM (2005) Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries. Biochemistry 44:1768–1779CrossRefPubMedGoogle Scholar
  9. Bryksa BC, Bhaumik P, Magracheva E, De Moura DC, Kurylowicz M, Zdanov A, Dutcher JR, Wlodawer A, Yada RY (2011) Structure and mechanism of the saposin-like domain of a plant aspartic protease. J Biol Chem 286:28265–28275CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castanheira P, Samyn B, Sergeant K, Clemente JC, Dunn BM, Pires E, Van Beeumen J, Faro C (2005) Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. J Biol Chem 280:13047–13054CrossRefPubMedGoogle Scholar
  11. Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6:786–787CrossRefPubMedGoogle Scholar
  12. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467CrossRefPubMedGoogle Scholar
  13. da Costa DS, Pereira S, Moore I, Pissarra J (2010) Dissecting cardosin B trafficking pathways in heterologous systems. Planta 232:1517–1530CrossRefPubMedGoogle Scholar
  14. da Costa DS, Pereira S, Pissarra J (2011) The heterologous systems in the study of cardosin B trafficking pathways. Plant Signal Behav 6:895–897CrossRefPubMedGoogle Scholar
  15. Duarte P, Pissarra J, Moore I (2008) Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. Planta 227:1255–1268CrossRefPubMedGoogle Scholar
  16. Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein engineering, design & selection: PEDS 17:107–112CrossRefGoogle Scholar
  17. Dunn BM, Hung S (2000) The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases. Biochim Biophys Acta 1477:231–240CrossRefPubMedGoogle Scholar
  18. Egas C, Lavoura N, Resende R, Brito RM, Pires E, de Lima MC, Faro C (2000) The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage. J Biol Chem 275:38190–38196CrossRefPubMedGoogle Scholar
  19. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501CrossRefPubMedPubMedCentralGoogle Scholar
  20. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72–82CrossRefPubMedGoogle Scholar
  21. Faro C, Ramalho-Santos M, Vieira M, Mendes A, Simoes I, Andrade R, Verissimo P, Lin X, Tang J, Pires E (1999) Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. J Biol Chem 274:28724–28729CrossRefPubMedGoogle Scholar
  22. Frazao C, Bento I, Costa J, Soares CM, Verissimo P, Faro C, Pires E, Cooper J, Carrondo MA (1999) Crystal structure of cardosin A, a glycosylated and Arg-Gly-Asp-containing aspartic proteinase from the flowers of Cynara cardunculus L. J Biol Chem 274:27694–27701CrossRefPubMedGoogle Scholar
  23. Jacob M, Jaros D, Rohm H (2011) Recent advances in milk clotting enzymes. Int J Dairy Technol 64:14–33Google Scholar
  24. Johnson ME, Lucey JA (2006) Major technological advances and trends in cheese. J Dairy Sci 89:1174–1178CrossRefPubMedGoogle Scholar
  25. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637CrossRefPubMedGoogle Scholar
  26. Kageyama H, Ueda H, Tezuka T, Ogasawara A, Narita Y, Kageyama T, Ichinose M (2010) Differences in the P1′ substrate specificities of pepsin A and chymosin. J Biochem 147:167–174CrossRefPubMedGoogle Scholar
  27. Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A (1999) Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 18:3947–3955CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, Lin X (2000) Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim Biophys Acta 1480:117–131CrossRefPubMedGoogle Scholar
  29. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797CrossRefPubMedGoogle Scholar
  30. Kumar A, Grover S, Sharma J, Batish VK (2010) Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 30:243–258CrossRefPubMedGoogle Scholar
  31. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  32. Leal AR, Cruz R, Bur D, Huesgen PF, Faro R, Manadas B, Wlodawer A, Faro C, Simoes I (2016) Enzymatic properties, evidence for in vivo expression, and intracellular localization of shewasin D, the pepsin homolog from Shewanella denitrificans. Sci Rep 6:23869CrossRefPubMedPubMedCentralGoogle Scholar
  33. Leslie AGW, Powell HR (2007) Processing diffraction data with Mosflm. In evolving methods for macromolecular crystallography, vol 245. Springer, pp 41–51, NetherlandsGoogle Scholar
  34. Lufrano D, Faro R, Castanheira P, Parisi G, Verissimo P, Vairo-Cavalli S, Simoes I, Faro C (2012) Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). Phytochemistry 81:7–18CrossRefPubMedGoogle Scholar
  35. Macedo AC, Malcata FX, Oliveira JC (1993) The technology, chemistry, and microbiology of Serra Cheese: a review. J Dairy Sci 76:1725–1739Google Scholar
  36. Mahanti M, Bhakat S, Nilsson UJ, Soderhjelm P (2016) Flap dynamics in aspartic proteases: a computational perspective. Chem Biol Drug Des 88:159–177CrossRefPubMedGoogle Scholar
  37. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674CrossRefPubMedPubMedCentralGoogle Scholar
  38. Munoz FF, Mendieta JR, Pagano MR, Paggi RA, Daleo GR, Guevara MG (2010) The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides 31:777–785CrossRefPubMedGoogle Scholar
  39. Munoz F, Palomares-Jerez MF, Daleo G, Villalain J, Guevara MG (2014) Possible mechanism of structural transformations induced by StAsp-PSI in lipid membranes. Biochim Biophys Acta 1838:339–347CrossRefPubMedGoogle Scholar
  40. Pereira CS, da Costa DS, Pereira S, Nogueira Fde M, Albuquerque PM, Teixeira J, Faro C, Pissarra J (2008) Cardosins in postembryonic development of cardoon: towards an elucidation of the biological function of plant aspartic proteinases. Protoplasma 232:203–213CrossRefPubMedGoogle Scholar
  41. Pereira C, Pereira S, Satiat-Jeunemaitre B, Pissarra J (2013) Cardosin A contains two vacuolar sorting signals using different vacuolar routes in tobacco epidermal cells. Plant J 76:87–100PubMedGoogle Scholar
  42. Ramalho-Santos M, Verissimo P, Cortes L, Samyn B, Van Beeumen J, Pires E, Faro C (1998) Identification and proteolytic processing of procardosin A. Eur J Biochem 255:133–138CrossRefPubMedGoogle Scholar
  43. Roseiro LB, Barbosa M, Ames JM, Wilbey RA (2003) Cheesemaking with vegetable coagulants—the use of Cynara L. for the production of ovine milk cheeses. Int J Dairy Technol 56:76–85CrossRefGoogle Scholar
  44. Schilling O, Overall CM (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26:685–694CrossRefPubMedGoogle Scholar
  45. Schilling O, auf dem Keller U, Overall CM (2011a) Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites. Biol Chem 392:1031–1037CrossRefPubMedGoogle Scholar
  46. Schilling O, Huesgen PF, Barre O, Auf dem Keller U, Overall CM (2011b) Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat Protoc 6:111–120CrossRefPubMedGoogle Scholar
  47. Shah MA, Mir SA, Paray MA (2014) Plant proteases as milk-clotting enzymes in cheesemaking: a review. Dairy Sci & Technol 94:5–16CrossRefGoogle Scholar
  48. Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, Mendoza L, Moritz RL, Aebersold R, Nesvizhskii AI (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10:M111 007690CrossRefPubMedPubMedCentralGoogle Scholar
  49. Terauchi K, Asakura T, Ueda H, Tamura T, Tamura K, Matsumoto I, Misaka T, Hara-Nishimura I, Abe K (2006) Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. J Plant Physiol 163:856–862CrossRefPubMedGoogle Scholar
  50. Theobald DL, Steindel PA (2012) Optimal simultaneous superpositioning of multiple structures with missing data. Bioinformatics 28:1972–1979CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tormakangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J (2001) A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13:2021–2032CrossRefPubMedPubMedCentralGoogle Scholar
  52. Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, Vriend G (2015) A series of PDB-related databanks for everyday needs. Nucleic Acids Res 43:D364–D368CrossRefPubMedGoogle Scholar
  53. Turner RT 3rd, Koelsch G, Hong L, Castanheira P, Ermolieff J, Ghosh AK, Tang J (2001) Subsite specificity of memapsin 2 (beta-secretase): implications for inhibitor design. Biochemistry 40:10001–10006CrossRefPubMedGoogle Scholar
  54. Vairo Cavalli S, Lufrano D, Colombo M, Priolo N (2013) Properties and applications of phytepsins from thistle flowers. Phytochemistry 92:16–32CrossRefPubMedGoogle Scholar
  55. Veríssimo P, Esteves AC, Faro C, Pires E (1995) The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pespin-likes specificities. Biotechnol Lett 17:621–626CrossRefGoogle Scholar
  56. Veríssimo P, Faro C, Moir AJ, Lin Y, Tang J, Pires E (1996) Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur J Biochem 235:762–768CrossRefPubMedGoogle Scholar
  57. Vieira M, Pissarr J, Verissimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45:529–539CrossRefPubMedGoogle Scholar
  58. Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–D456CrossRefPubMedGoogle Scholar
  59. White PC, Cordeiro MC, Arnold D, Brodelius PE, Kay J (1999) Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus). J Biol Chem 274:16685–16693CrossRefPubMedGoogle Scholar
  60. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yegin S, Fernandez-Lahore M (2013) A thermolabile aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris. Mol Biotechnol 54:661–672CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Carla Malaquias Almeida
    • 1
  • José A. Manso
    • 2
    • 3
  • Ana C. Figueiredo
    • 2
    • 3
  • Liliana Antunes
    • 1
    • 4
  • Rui Cruz
    • 1
    • 5
  • Bruno Manadas
    • 5
  • Daniel Bur
    • 6
  • Pedro José Barbosa Pereira
    • 2
    • 3
  • Carlos Faro
    • 1
    • 5
  • Isaura Simões
    • 1
    • 5
  1. 1.Biocant, Biotechnology Innovation CenterParque Tecnológico de CantanhedeCantanhedePortugal
  2. 2.IBMC, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
  3. 3.Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  4. 4.Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
  5. 5.CNC-Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  6. 6.Actelion Pharmaceuticals Ltd.AllschwilSwitzerland

Personalised recommendations