Skip to main content
Log in

Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript


Brown macroalgae are a sustainable and promising source for bioethanol production because they are abundant in ocean ecosystems and contain negligible quantities of lignin. Brown macroalgae contain cellulose, hemicellulose, mannitol, laminarin, and alginate as major carbohydrates. Among these carbohydrates, brown macroalgae are characterized by high levels of alginate and mannitol. The direct bioconversion of alginate and mannitol into ethanol requires extensive bioengineering of assimilation processes in the standard industrial microbe Saccharomyces cerevisiae. Here, we constructed an alginate-assimilating S. cerevisiae recombinant strain by genome integration and overexpression of the genes encoding endo- and exo-type alginate lyases, DEH (4-deoxy-l-erythro-5-hexoseulose uronic acid) transporter, and components of the DEH metabolic pathway. Furthermore, the mannitol-metabolizing capacity of S. cerevisiae was enhanced by prolonged culture in a medium containing mannitol as the sole carbon source. When the constructed strain AM1 was anaerobically cultivated in a fermentation medium containing 6% (w/v) total sugars (approximately 1:2 ratio of alginate/mannitol), it directly produced ethanol from alginate and mannitol, giving 8.8 g/L ethanol and yields of up to 32% of the maximum theoretical yield from consumed sugars. These results indicate that all major carbohydrates of brown macroalgae can be directly converted into bioethanol by S. cerevisiae. This strain and system could provide a platform for the complete utilization of brown macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  • Apiwatanapiwat W, Murata Y, Kosugi A, Yamada R, Kondo A, Arai T, Rugthaworn P, Mori Y (2011) Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Appl Microbial Biotechnol 90:377–384. doi:10.1007/s00253-011-3115-8

    Article  CAS  Google Scholar 

  • Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270. doi:10.1101/gr.091777.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae. Appl Environ Microbiol 81:59–66. doi:10.1128/AEM.02864-14

    Article  PubMed  Google Scholar 

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  PubMed  Google Scholar 

  • Chujo M, Yoshida S, Ota A, Murata K, Kawai S (2015) Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81:9–16. doi:10.1128/AEM.02906-14

    Article  PubMed  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energ Convers Manage 51:2738–2749. doi:10.1016/j.enconman.2010.06.010

    Article  CAS  Google Scholar 

  • Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. Biopolymers Online, 6. Wiley-VCH Verlag GmbH & Co., Berlin. doi:10.1002/3527600035.bpol6008

    Google Scholar 

  • Enquist-Newman M, Faust AM, Bravo DD, Santos CN, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243. doi:10.1038/nature12771

    Article  CAS  PubMed  Google Scholar 

  • Ferreres F, Lopes G, Gil-Izquierdo A, Andrade PB, Sousa C, Mouga T, Valentao P (2012) Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar Drugs 10:2766–2781. doi:10.3390/md10122766

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi C, Takase R, Momma K, Maruyama Y, Murata K, Hashimoto W (2014) Alginate-dependent gene expression mechanism in Sphingomonas sp. strain A1. J Bacteriol 196:2691–2700. doi:10.1128/JB.01666-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254. doi:10.1038/sj.jim.7000065

    Article  CAS  Google Scholar 

  • Hughes SR, Qureshi N (2010) Biofuel demand realization. In: Vertès A, Qureshi N, Yukawa H, Blaschek HP (eds) Biomass to biofuels: strategies for global industries. Wiley, New York, pp 55–69

    Chapter  Google Scholar 

  • Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7:8. doi:10.1186/1754-6834-7-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii J, Okazaki F, Djohan AC, Hara KY, Asai-Nakashima N, Teramura H, Andriani A, Tominaga M, Wakai S, Kahar P, Yopi PB, Ogino C, Kondo A (2016) From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae. Biotechnol Biofuels 9:188. doi:10.1186/s13068-016-0600-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji SQ, Wang B, Lu M, Li FL (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol Biofuels 9:81. doi:10.1186/s13068-016-0494-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabisch A, Otto A, Konig S, Becher D, Albrecht D, Schuler M, Teeling H, Amann RI, Schweder T (2014) Functional characterization of polysaccharide utilization loci in the marine bacteroidetes ‘Gramella forsetii’ KT0803. ISME J 8:1492–1502. doi:10.1038/ismej.2014.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai S, Murata K (2016) Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci 17:145. doi:10.3390/ijms17020145

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeasts for bioethanol production from UK seaweeds. J Appl Phycol 28:1427–1441. doi:10.1007/s10811-015-0633-2

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2013) Arming technology in yeast—novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules 3:632–650. doi:10.3390/biom3030632

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J. doi:10.1155/2014/631013

  • Motone K, Takagi T, Sasaki Y, Kuroda K, Ueda M (2016) Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. J Biotechnol 231:129–135. doi:10.1016/j.jbiotec.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  • Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Kawai S, Oda H, Iohara K, Murata K (2013) Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259. J Biosci Bioeng 116:327–332. doi:10.1016/j.jbiosc.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  • Qin YM (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57:171–180. doi:10.1002/pi.2296

    Article  CAS  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. PNNL-19944. Pacific Northwest National Laboratory, Richland. doi:10.2172/1006310

    Book  Google Scholar 

  • Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504. doi:10.1016/j.biortech.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Nagayama K, Tanaka R, Yamaguchi K, Nakamura T (2003) Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J Appl Phycol 15:61–66. doi:10.1023/A:1022972221002

    Article  CAS  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi:10.1017/S0376892902000322

    Article  Google Scholar 

  • Takagi T, Morisaka H, Aburaya S, Tatsukami Y, Kuroda K, Ueda M (2016a) Putative alginate assimilation process of the marine bacterium Saccharophagus degradans 2–40 based on quantitative proteomic analysis. Mar Biotechnol 18:15–23. doi:10.1007/s10126-015-9667-3

    Article  CAS  PubMed  Google Scholar 

  • Takagi T, Yokoi T, Shibata T, Morisaka H, Kuroda K, Ueda M (2016b) Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl Microbiol Biotechnol 100:1723–1732. doi:10.1007/s00253-015-7035-x

    Article  CAS  PubMed  Google Scholar 

  • Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochim Biophys Acta 1804:1925–1936. doi:10.1016/j.bbapap.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4:2575–2581. doi:10.1039/C1EE01236C

    Article  CAS  Google Scholar 

  • Tesfaw A, Assefa F (2014) Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int Sch Res Notices 2014:532852. doi:10.1155/2014/532852

    PubMed  PubMed Central  Google Scholar 

  • Wang DM, Kim HT, Yun EJ, Kim DH, Park YC, Woo HC, Kim KH (2014) Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess Biosyst Eng 37:2105–2111. doi:10.1007/s00449-014-1188-3

    Article  CAS  PubMed  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313. doi:10.1126/science.1214547

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Quarterman J, Jin YS (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77. doi:10.1016/j.tibtech.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3:301–307. doi:10.1016/0961-9534(92)90001-7

    Article  CAS  Google Scholar 

Download references


This research was supported by JST, CREST, and a Grant-in-Aid for JSPS Fellows (No. 15J01303) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mitsuyoshi Ueda.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare that they have no conflict of interests.

Electronic supplementary material


(PDF 3.23 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, T., Sasaki, Y., Motone, K. et al. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Appl Microbiol Biotechnol 101, 6627–6636 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: