Skip to main content

Advertisement

Log in

Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Worldwide agricultural food production has to double in 2050 so as to feed the global increasing population while reducing dependency on conventional chemical fertilizers plus pesticides. To accomplish this objective, there is the need to explore the several mutualistic interactions between plant roots and rhizosphere microbiome. Biofertilization is the process of boosting the abundance of microorganisms such as arbuscular mycorrhizal fungi (AMF) in the natural plant rhizosphere which depicts a beneficial alternative to chemical fertilization practices. Mineral nutrients uptake by AMF are plausible by means of transporters coded for by different genes and example include phosphate transporter. These fungi can be produced industrially using plant host and these, including the possibility of AMF contamination by other microorganism, are factors militating against large scale production of AMF. AMF isolates can be inoculated in the greenhouse or field, and it has been shown that AMF survival and colonization level were enhanced in soybeans grown on land that was previously cultivated with the same plant. Next generation sequencing (NGS) is now used to gain insight into how AMF interact with indigenous AMF and screen for beneficial microbial candidates. Besides application as biofertilizers, novel findings on AMF that could contribute to maintenance of agricultural development include AMF roles in controlling soil erosion, enhancing phytoremediation, and elimination of other organisms that may be harmful to crops through common mycelia network. The combination of these potentials when fully harnessed under agricultural scenario will help to sustain agriculture and boost food security globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Fattah GM, Asrar A-WA (2012) Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol Plant 34:267–277

    Article  CAS  Google Scholar 

  • Abdel-Fattah G, Asrar A, Al-Amri S, Abdel-Salam E (2014) Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica 52:581–588

    Article  CAS  Google Scholar 

  • Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J, 2012

  • Alguacil M, Caravaca F, Díaz-Vivancos P, Hernández JA, Roldán A (2006) Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant Soil 279:218–209

    Article  Google Scholar 

  • Alori ET, Dare MO, Babalola OO (2017) Microbial inoculants for soil quality and plant health. Sust Agric Rev, 281–307

  • Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR (2014) Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME J 8:284–294

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2014) Does nature make provision for backups in the modification of bacterial community structures? Biotechnol Genet Eng Rev 30:31–48

    Article  PubMed  Google Scholar 

  • Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23:747–752

    Article  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Bapaume L, Reinhardt D (2012) How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Front Plant Sci 3:1–29

    Article  Google Scholar 

  • Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. Abiotic stress: new research Nova Science Publishers Inc, Hauppauge, pp 1–57

    Google Scholar 

  • Behie S, Zelisko P, Bidochka M (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Borriello R, Della Beffa MT, Scariot V, Bianciotto V (2013) Application of nonspecific commercial AMF inocula results in poor mycorrhization in Camellia japonica L. Symbiosis 61:63–76

    Article  CAS  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2015) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann Rev Microbiol 66:265–283

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bhat M, Yadav S, Ali T, Bangroo S (2010) Combined effects of Rhizobium and vesicular arbuscular fungi on green gram (Vigna radiata L.) under temperate conditions. Indian J Ecol 37:157–161

    Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fert Soils 48:911–922

    Article  Google Scholar 

  • Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2; 3. Plant Cell 27:1352–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, Sanders IR (2013) The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daei G, Ardekani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias ACF, Hoogwout EF, e Silva MCP, Salles JF, van Overbeek LS, van Elsas JD (2012) Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere. Soil Biol Biochem 50:85–95

    Article  CAS  Google Scholar 

  • Faye A, Dalpé Y, Ndung'u-Magiroi K, Jefwa J, Ndoye I, Diouf M, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants. Canadian J Plant Sci 93:1201–1208

    Article  Google Scholar 

  • Gesch R, Archer D (2013) Double-cropping with winter camelina in the northern Corn Belt to produce fuel and food. Indust Crops Prod 44:718–725

    Article  Google Scholar 

  • Gilbert L, Johnson D (2015) Plant-mediated ‘apparent effects’ between mycorrhiza and insect herbivores. Curr Opin Plant Biol 26:100–105

    Article  PubMed  Google Scholar 

  • González-López J (2013) Beneficial plant-microbial interactions: ecology and applications. CRC press, Boca Raton

    Book  Google Scholar 

  • Gupta VV (2012) Beneficial microorganisms for sustainable agriculture. Microbiol Aust 113:113–115

    Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart MM, Forsythe JA (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hort 148:206–214

    Article  CAS  Google Scholar 

  • Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hou MP, Babalola OO (2013) Evaluation of plant growth promoting potential of four rhizobacterial species for indigenous system. J Cent South Univ 20:164–171

    Article  CAS  Google Scholar 

  • Igiehon ON (2015) Bioremediation potentials of Heterobasidion annosum 13.12 B and Resinicium bicolor in diesel oil contaminated soil microcosms. J Appl Sci Environ Manage 19:513–519

    Google Scholar 

  • Janoušková M, Pavlíková D, Vosátka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965

    Article  PubMed  Google Scholar 

  • Jie W, Liu X, Cai B (2013) Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. PLoS One 8:e72898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153

    Article  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds DD (2012) Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl Soil Ecol 61:300–304

    Article  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants—a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Liu X, Li Y, Han B, Zhang Q, Zhou K, Zhang X, Hashemi M (2012) Yield response of continuous soybean to one-season crop disturbance in a previous continuous soybean field in Northeast China. Field Crops Res 138:52–56

    Article  Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    Article  CAS  Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafa G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Sadhana B (2014) Arbuscular mycorrhizal fungi (AMF) as a biofertilizer. A review. Int J Curr Microbiol Appl Sci 3:384–400

    Google Scholar 

  • Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U, van der Heijden MG, Oehl F (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem 84:38–52

    Article  Google Scholar 

  • Tanaka Y, Watanabe J, Mogi Y (2012) Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiol 31:100–106

    Article  CAS  PubMed  Google Scholar 

  • Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resourc 12:219–232

    Article  CAS  Google Scholar 

  • Tian H, Drijber R, Zhang J, Li X (2013) Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agric. Ecosyst Environ 164:53–61

    Article  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, dit Frey NF, Gianinazzi-Pearson V (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannette RL, Rasmann S (2012) Arbuscular mycorrhizal fungi mediate below ground plant herbivore interactions: a phylogenetic study. Funct Ecol 26:1033–1042

    Article  Google Scholar 

  • Verbruggen E, Heijden MG, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109

    Article  PubMed  Google Scholar 

  • Volpe V, Giovannetti M, Sun XG, Fiorilli V, Bonfante P (2015) The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant Cell Environ 39:660–670

    Article  Google Scholar 

  • Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Article  Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198:836–852

    Article  CAS  PubMed  Google Scholar 

  • Yang S-Y, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller SL, Kalinina O, Schmid B (2013) Costs of resistance to fungal pathogens in genetically modified wheat. J Plant Ecol 6:92–100

    Article  Google Scholar 

  • Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fert Soils 47:543–554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

South Africa’s National Research Foundation/The World Academy of Science African Renaissance granted NOI Doctoral Scholarships. OOB would like to thank the National Research Foundation, South Africa for grant (UID81192) that has supported research in our lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola O. Babalola.

Ethics declarations

Funding

The study was funded by South Africa’s National Research Foundation grant (UID81192) and South Africa’s National Research Foundation/The World Academy of Science African Renaissance Scholarship.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igiehon, N.O., Babalola, O.O. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101, 4871–4881 (2017). https://doi.org/10.1007/s00253-017-8344-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8344-z

Keywords

Navigation