Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-l-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2

Abstract

Lignocellulosic biomass from various types of wood has become a renewable resource for production of biofuels and biobased chemicals. Because xylan is the major component of wood hemicelluloses, highly efficient enzymes to enhance xylan hydrolysis can improve the use of lignocellulosic biomass. In this study, a xylanolytic gene cluster was identified from the crude oil-degrading thermophilic strain Geobacillus thermodenitrificans NG80-2. The enzymes involved in xylan hydrolysis, which include two xylanases (XynA1, XynA2), three β-xylosidases (XynB1, XynB2, XynB3), and one α-l-arabinofuranosidase (AbfA), have many unique features, such as high pH tolerance, high thermostability, and a broad substrate range. The three β-xylosidases were highly resistant to inhibition by product (xylose) accumulation. Moreover, the combination of xylanase, β-xylosidase, and α-l-arabinofuranosidase exhibited the largest synergistic action on xylan degradation (XynA2, XynB1, and AbfA on oat spelt or beechwood xylan; XynA2, XynB3, and AbfA on birchwood xylan). We have demonstrated that the proposed enzymatic cocktail almost completely converts complex xylan to xylose and arabinofuranose and has great potential for use in the conversion of plant biomass into biofuels and biochemicals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77:1892–1895. doi:10.1128/aem.02076-10

    CAS  Article  PubMed  Google Scholar 

  2. Ali MK, Rudolph FB, Bennett GN (2004) Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. J Ind Microbiol Biotechnol 31:229–234. doi:10.1007/s10295-004-0143-8

    CAS  Article  PubMed  Google Scholar 

  3. Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366. doi:10.1007/s00792-013-0524-x

    CAS  Article  PubMed  Google Scholar 

  4. Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43:141–194

    CAS  Article  PubMed  Google Scholar 

  5. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    CAS  Article  PubMed  Google Scholar 

  6. Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Cougland MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 29–52

    Google Scholar 

  7. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954. doi:10.1073/pnas.1106958108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  9. Canakci S, Kacagan M, Inan K, Belduz AO, Saha BC (2008) Cloning, purification, and characterization of a thermostable α-L-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl Microbiol Biotechnol 81:61–68. doi:10.1007/s00253-008-1584-1

    CAS  Article  PubMed  Google Scholar 

  10. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221. doi:10.1016/j.biortech.2011.10.083

    CAS  Article  PubMed  Google Scholar 

  11. Christov LP, Myburgh J, O’Neill FH, Van Tonder A, Prior BA (1999) Modification of the carbohydrate composition of sulfite pulp by purified and characterized β-xylanase and β-xylosidase of Aureobasidium pullulans. Biotechnol Prog 15:196–200. doi:10.1021/bp9900054

    CAS  Article  PubMed  Google Scholar 

  12. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176. doi:10.1002/bit.21082

    CAS  Article  PubMed  Google Scholar 

  13. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. doi:10.1016/j.femsre.2004.06.005

    CAS  Article  PubMed  Google Scholar 

  14. Dobberstein J, Emeis CC (1991) Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 35:210–215. doi:10.1007/bf00184688

    CAS  Article  Google Scholar 

  15. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971. doi:10.1038/nprot.2007.131

    CAS  Article  PubMed  Google Scholar 

  16. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607. doi:10.1073/pnas.0609650104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi:10.1016/j.biortech.2010.01.088

    Article  PubMed  Google Scholar 

  18. Jiang ZQ, Yang SQ, Tan SS, Li LT, Li XT (2005) Characterization of a xylanase from the newly isolated thermophilic Thermomyces lanuginosus CAU44 and its application in bread making. Lett Appl Microbiol 41:69–76. doi:10.1111/j.1472-765X.2005.01725.x

    CAS  Article  PubMed  Google Scholar 

  19. Kambourova M, Mandeva R, Fiume I, Maurelli L, Rossi M, Morana A (2007) Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. J Appl Microbiol 102:1586–1593. doi:10.1111/j.1365-2672.2006.03197.x

    CAS  Article  PubMed  Google Scholar 

  20. Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246. doi:10.1038/35051719

    CAS  Article  PubMed  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Article  PubMed  Google Scholar 

  23. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289. doi:10.1016/j.resmic.2004.02.001

    CAS  Article  PubMed  Google Scholar 

  24. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-L-arabinofuranosidase and β-D-xylosidase activity: characterization, primary structures, and COOH-terminal processing. J Biol Chem 278:5377–5387. doi:10.1074/jbc.M210627200

    CAS  Article  PubMed  Google Scholar 

  25. Manin C, Shareek F, Morosoli R, Kluepfel D (1994) Purification and characterization of an α-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). Biochem J 302:443–449. doi:10.1042/bj3020443

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Margolles A, de los Reyes-Gavilán CG (2003) Purification and functional characterization of a novel α-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69:5096–5103. doi:10.1128/AEM.69.9.5096-5103.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53. doi:10.1007/s00253-009-2101-x

    CAS  Article  PubMed  Google Scholar 

  28. Mattéotti C, Haubruge E, Thonart P, Francis F, De Pauw E, Portetelle D, Vandenbol M (2011) Characterization of a new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiol Lett 314:147–157. doi:10.1111/j.1574-6968.2010.02161.x

    Article  PubMed  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    CAS  Article  Google Scholar 

  30. Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99:7553–7564. doi:10.1016/j.biortech.2008.02.009

    CAS  Article  PubMed  Google Scholar 

  31. Morana A, Paris O, Maurelli L, Rossi M, Cannio R (2007) Gene cloning and expression in Escherichia coli of a bi-functional β-D-xylosidase/α-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11:123–132. doi:10.1007/s00792-006-0020-7

    CAS  Article  PubMed  Google Scholar 

  32. Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591. doi:10.1007/s00253-005-1904-7

    CAS  Article  PubMed  Google Scholar 

  34. Poutanen K, Puls J (1988) Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Appl Microbiol Biotechnol 28:425–432. doi:10.1007/bf00268208

    CAS  Article  Google Scholar 

  35. Rasmussen LE, Sorensen HR, Vind J, Vikso-Nielsen A (2006) Mode of action and properties of the β-xylosidases from Talaromyces emersonii and Trichoderma reesei. Biotechnol Bioeng 94:869–876. doi:10.1002/bit.20908

    CAS  Article  PubMed  Google Scholar 

  36. Rastall RA (2010) Functional oligosaccharides: application and manufacture. Annu Rev Food Sci Technol 1:305–339. doi:10.1146/annurev.food.080708.100746

    CAS  Article  PubMed  Google Scholar 

  37. Raweesri P, Riangrungrojana P, Pinphanichakarn P (2008) α-L-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour Technol 99:8981–8986. doi:10.1016/j.biortech.2008.05.016

    CAS  Article  PubMed  Google Scholar 

  38. Saha B (2003a) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. doi:10.1007/s10295-003-0049-x

    CAS  Article  PubMed  Google Scholar 

  39. Saha BC (2003b) Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresour Technol 90:33–38. doi:10.1016/S0960-8524(03)00098-1

    CAS  Article  PubMed  Google Scholar 

  40. Sampaio FC, Chaves-Alves VM, Converti A, Lopes Passos FM, Cavalcante Coelho JL (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour Technol 99:502–508. doi:10.1016/j.biortech.2007.01.017

    CAS  Article  PubMed  Google Scholar 

  41. Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham G, Shoham Y (2002) The identification of the acid–base catalyst of α-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. FEBS Lett 514:163–167. doi:10.1016/S0014-5793(02)02343-8

    CAS  Article  PubMed  Google Scholar 

  42. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-D-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397. doi:10.1021/bi048059w

    CAS  Article  PubMed  Google Scholar 

  43. Shi H, Li X, Gu H, Zhang Y, Huang Y, Wang L, Wang F (2013a) Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 6:1–10. doi:10.1186/1754-6834-6-27

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Shi P, Chen X, Meng K, Huang H, Bai Y, Luo H, Yang P, Yao B (2013b) Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation. Appl Environ Microbiol 79:1990–1995. doi:10.1128/aem.03276-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol 91:1537–1544. doi:10.1007/s00253-011-3342-z

    CAS  Article  PubMed  Google Scholar 

  46. Shulami S, Gat O, Sonenshein AL, Shoham Y (1999) The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 181:3695–3704

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64. doi:10.1080/07388550290789450

    CAS  Article  PubMed  Google Scholar 

  48. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. doi:10.1093/bioinformatics/btr039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Suzuki S, Fukuoka M, Ookuchi H, Sano M, Ozeki K, Nagayoshi E, Takii Y, Matsushita M, Tada S, Kusumoto K-I, Kashiwagi Y (2010) Characterization of Aspergillus oryzae glycoside hydrolase family 43 β-xylosidase expressed in Escherichia coli. J Biosci Bioeng 109:115–117. doi:10.1016/j.jbiosc.2009.07.018

    CAS  Article  PubMed  Google Scholar 

  50. Tulchin N, Ornstein L, Davis BJ (1976) A microgel system for disc electrophoresis. Anal Biochem 72:485–490

    CAS  Article  PubMed  Google Scholar 

  51. Tuncer M, Ball AS (2003) Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. J Appl Microbiol 94:1030–1035. doi:10.1046/j.1365-2672.2003.01943.x

    CAS  Article  PubMed  Google Scholar 

  52. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. doi:10.1016/j.biotechadv.2012.03.002

    CAS  Article  PubMed  Google Scholar 

  53. Vázquez MJ, Alonso JL, Domínguez H, Parajó JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393. doi:10.1016/S0924-2244(01)00031-0

    Article  Google Scholar 

  54. Waino M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93. doi:10.1007/s00792-002-0299-y

    CAS  PubMed  Google Scholar 

  55. Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356. doi:10.1007/s00792-006-0505-4

    CAS  Article  PubMed  Google Scholar 

  56. Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402–5410. doi:10.1016/j.biortech.2007.11.033

    CAS  Article  PubMed  Google Scholar 

  57. Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B (2014) Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387. doi:10.1016/j.foodchem.2013.10.062

    CAS  Article  PubMed  Google Scholar 

  58. Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B (2015) A novel bifunctional GH51 exo-α-L-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnol Biofuels 8:1–11. doi:10.1186/s13068-015-0366-0

    Article  Google Scholar 

  59. Zha J, Shen M, Hu M, Song H, Yuan Y (2014) Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 41:27–39. doi:10.1007/s10295-013-1350-y

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Basic Research Program of China (973 Program) (Nos. 2013CB733904, 2012CB721001, and 2012CB721101), the National Natural Science Foundation of China (Nos. ​31270133, 31470194, 31371259, 81471904, 31270003 and 31400081), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCQNJC09700) and the Fundamental Research Funds for the Central Universities (No. 65141028).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Di Huang or Lu Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Electronic supplementary material

ESM 1

(PDF 267 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Liu, J., Qi, Y. et al. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-l-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol 101, 6023–6037 (2017). https://doi.org/10.1007/s00253-017-8341-2

Download citation

Keywords

  • Xylan
  • Xylanase
  • β-Xylosidase
  • α-l-Arabinofuranosidase
  • Synergistic action
  • Geobacillus thermodenitrificans NG80-2