Applied Microbiology and Biotechnology

, Volume 101, Issue 15, pp 6023–6037 | Cite as

Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-l-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2

  • Di HuangEmail author
  • Jia Liu
  • Yanfei Qi
  • Kexin Yang
  • Yingying Xu
  • Lu FengEmail author
Biotechnologically relevant enzymes and proteins


Lignocellulosic biomass from various types of wood has become a renewable resource for production of biofuels and biobased chemicals. Because xylan is the major component of wood hemicelluloses, highly efficient enzymes to enhance xylan hydrolysis can improve the use of lignocellulosic biomass. In this study, a xylanolytic gene cluster was identified from the crude oil-degrading thermophilic strain Geobacillus thermodenitrificans NG80-2. The enzymes involved in xylan hydrolysis, which include two xylanases (XynA1, XynA2), three β-xylosidases (XynB1, XynB2, XynB3), and one α-l-arabinofuranosidase (AbfA), have many unique features, such as high pH tolerance, high thermostability, and a broad substrate range. The three β-xylosidases were highly resistant to inhibition by product (xylose) accumulation. Moreover, the combination of xylanase, β-xylosidase, and α-l-arabinofuranosidase exhibited the largest synergistic action on xylan degradation (XynA2, XynB1, and AbfA on oat spelt or beechwood xylan; XynA2, XynB3, and AbfA on birchwood xylan). We have demonstrated that the proposed enzymatic cocktail almost completely converts complex xylan to xylose and arabinofuranose and has great potential for use in the conversion of plant biomass into biofuels and biochemicals.


Xylan Xylanase β-Xylosidase α-l-Arabinofuranosidase Synergistic action Geobacillus thermodenitrificans NG80-2 



This research was financially supported by the National Basic Research Program of China (973 Program) (Nos. 2013CB733904, 2012CB721001, and 2012CB721101), the National Natural Science Foundation of China (Nos. ​31270133, 31470194, 31371259, 81471904, 31270003 and 31400081), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCQNJC09700) and the Fundamental Research Funds for the Central Universities (No. 65141028).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Supplementary material

253_2017_8341_MOESM1_ESM.pdf (268 kb)
ESM 1 (PDF 267 kb).


  1. Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77:1892–1895. doi: 10.1128/aem.02076-10 CrossRefPubMedGoogle Scholar
  2. Ali MK, Rudolph FB, Bennett GN (2004) Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. J Ind Microbiol Biotechnol 31:229–234. doi: 10.1007/s10295-004-0143-8 CrossRefPubMedGoogle Scholar
  3. Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366. doi: 10.1007/s00792-013-0524-x CrossRefPubMedGoogle Scholar
  4. Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43:141–194CrossRefPubMedGoogle Scholar
  5. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338CrossRefPubMedGoogle Scholar
  6. Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Cougland MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 29–52Google Scholar
  7. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954. doi: 10.1073/pnas.1106958108 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Canakci S, Kacagan M, Inan K, Belduz AO, Saha BC (2008) Cloning, purification, and characterization of a thermostable α-L-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl Microbiol Biotechnol 81:61–68. doi: 10.1007/s00253-008-1584-1 CrossRefPubMedGoogle Scholar
  10. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221. doi: 10.1016/j.biortech.2011.10.083 CrossRefPubMedGoogle Scholar
  11. Christov LP, Myburgh J, O’Neill FH, Van Tonder A, Prior BA (1999) Modification of the carbohydrate composition of sulfite pulp by purified and characterized β-xylanase and β-xylosidase of Aureobasidium pullulans. Biotechnol Prog 15:196–200. doi: 10.1021/bp9900054 CrossRefPubMedGoogle Scholar
  12. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176. doi: 10.1002/bit.21082 CrossRefPubMedGoogle Scholar
  13. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. doi: 10.1016/j.femsre.2004.06.005 CrossRefPubMedGoogle Scholar
  14. Dobberstein J, Emeis CC (1991) Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 35:210–215. doi: 10.1007/bf00184688 CrossRefGoogle Scholar
  15. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971. doi: 10.1038/nprot.2007.131 CrossRefPubMedGoogle Scholar
  16. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607. doi: 10.1073/pnas.0609650104 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi: 10.1016/j.biortech.2010.01.088 CrossRefPubMedGoogle Scholar
  18. Jiang ZQ, Yang SQ, Tan SS, Li LT, Li XT (2005) Characterization of a xylanase from the newly isolated thermophilic Thermomyces lanuginosus CAU44 and its application in bread making. Lett Appl Microbiol 41:69–76. doi: 10.1111/j.1472-765X.2005.01725.x CrossRefPubMedGoogle Scholar
  19. Kambourova M, Mandeva R, Fiume I, Maurelli L, Rossi M, Morana A (2007) Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. J Appl Microbiol 102:1586–1593. doi: 10.1111/j.1365-2672.2006.03197.x CrossRefPubMedGoogle Scholar
  20. Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730PubMedPubMedCentralGoogle Scholar
  21. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246. doi: 10.1038/35051719 CrossRefPubMedGoogle Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  23. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289. doi: 10.1016/j.resmic.2004.02.001 CrossRefPubMedGoogle Scholar
  24. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-L-arabinofuranosidase and β-D-xylosidase activity: characterization, primary structures, and COOH-terminal processing. J Biol Chem 278:5377–5387. doi: 10.1074/jbc.M210627200 CrossRefPubMedGoogle Scholar
  25. Manin C, Shareek F, Morosoli R, Kluepfel D (1994) Purification and characterization of an α-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). Biochem J 302:443–449. doi: 10.1042/bj3020443 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Margolles A, de los Reyes-Gavilán CG (2003) Purification and functional characterization of a novel α-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69:5096–5103. doi: 10.1128/AEM.69.9.5096-5103.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53. doi: 10.1007/s00253-009-2101-x CrossRefPubMedGoogle Scholar
  28. Mattéotti C, Haubruge E, Thonart P, Francis F, De Pauw E, Portetelle D, Vandenbol M (2011) Characterization of a new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiol Lett 314:147–157. doi: 10.1111/j.1574-6968.2010.02161.x CrossRefPubMedGoogle Scholar
  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  30. Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99:7553–7564. doi: 10.1016/j.biortech.2008.02.009 CrossRefPubMedGoogle Scholar
  31. Morana A, Paris O, Maurelli L, Rossi M, Cannio R (2007) Gene cloning and expression in Escherichia coli of a bi-functional β-D-xylosidase/α-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11:123–132. doi: 10.1007/s00792-006-0020-7 CrossRefPubMedGoogle Scholar
  32. Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672CrossRefPubMedPubMedCentralGoogle Scholar
  33. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591. doi: 10.1007/s00253-005-1904-7 CrossRefPubMedGoogle Scholar
  34. Poutanen K, Puls J (1988) Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Appl Microbiol Biotechnol 28:425–432. doi: 10.1007/bf00268208 CrossRefGoogle Scholar
  35. Rasmussen LE, Sorensen HR, Vind J, Vikso-Nielsen A (2006) Mode of action and properties of the β-xylosidases from Talaromyces emersonii and Trichoderma reesei. Biotechnol Bioeng 94:869–876. doi: 10.1002/bit.20908 CrossRefPubMedGoogle Scholar
  36. Rastall RA (2010) Functional oligosaccharides: application and manufacture. Annu Rev Food Sci Technol 1:305–339. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  37. Raweesri P, Riangrungrojana P, Pinphanichakarn P (2008) α-L-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour Technol 99:8981–8986. doi: 10.1016/j.biortech.2008.05.016 CrossRefPubMedGoogle Scholar
  38. Saha B (2003a) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. doi: 10.1007/s10295-003-0049-x CrossRefPubMedGoogle Scholar
  39. Saha BC (2003b) Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresour Technol 90:33–38. doi: 10.1016/S0960-8524(03)00098-1 CrossRefPubMedGoogle Scholar
  40. Sampaio FC, Chaves-Alves VM, Converti A, Lopes Passos FM, Cavalcante Coelho JL (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour Technol 99:502–508. doi: 10.1016/j.biortech.2007.01.017 CrossRefPubMedGoogle Scholar
  41. Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham G, Shoham Y (2002) The identification of the acid–base catalyst of α-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. FEBS Lett 514:163–167. doi: 10.1016/S0014-5793(02)02343-8 CrossRefPubMedGoogle Scholar
  42. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-D-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397. doi: 10.1021/bi048059w CrossRefPubMedGoogle Scholar
  43. Shi H, Li X, Gu H, Zhang Y, Huang Y, Wang L, Wang F (2013a) Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 6:1–10. doi: 10.1186/1754-6834-6-27 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shi P, Chen X, Meng K, Huang H, Bai Y, Luo H, Yang P, Yao B (2013b) Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation. Appl Environ Microbiol 79:1990–1995. doi: 10.1128/aem.03276-12 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol 91:1537–1544. doi: 10.1007/s00253-011-3342-z CrossRefPubMedGoogle Scholar
  46. Shulami S, Gat O, Sonenshein AL, Shoham Y (1999) The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 181:3695–3704PubMedPubMedCentralGoogle Scholar
  47. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64. doi: 10.1080/07388550290789450 CrossRefPubMedGoogle Scholar
  48. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. doi: 10.1093/bioinformatics/btr039 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Suzuki S, Fukuoka M, Ookuchi H, Sano M, Ozeki K, Nagayoshi E, Takii Y, Matsushita M, Tada S, Kusumoto K-I, Kashiwagi Y (2010) Characterization of Aspergillus oryzae glycoside hydrolase family 43 β-xylosidase expressed in Escherichia coli. J Biosci Bioeng 109:115–117. doi: 10.1016/j.jbiosc.2009.07.018 CrossRefPubMedGoogle Scholar
  50. Tulchin N, Ornstein L, Davis BJ (1976) A microgel system for disc electrophoresis. Anal Biochem 72:485–490CrossRefPubMedGoogle Scholar
  51. Tuncer M, Ball AS (2003) Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. J Appl Microbiol 94:1030–1035. doi: 10.1046/j.1365-2672.2003.01943.x CrossRefPubMedGoogle Scholar
  52. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. doi: 10.1016/j.biotechadv.2012.03.002 CrossRefPubMedGoogle Scholar
  53. Vázquez MJ, Alonso JL, Domínguez H, Parajó JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393. doi: 10.1016/S0924-2244(01)00031-0 CrossRefGoogle Scholar
  54. Waino M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93. doi: 10.1007/s00792-002-0299-y PubMedGoogle Scholar
  55. Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356. doi: 10.1007/s00792-006-0505-4 CrossRefPubMedGoogle Scholar
  56. Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402–5410. doi: 10.1016/j.biortech.2007.11.033 CrossRefPubMedGoogle Scholar
  57. Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B (2014) Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387. doi: 10.1016/j.foodchem.2013.10.062 CrossRefPubMedGoogle Scholar
  58. Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B (2015) A novel bifunctional GH51 exo-α-L-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnol Biofuels 8:1–11. doi: 10.1186/s13068-015-0366-0 CrossRefGoogle Scholar
  59. Zha J, Shen M, Hu M, Song H, Yuan Y (2014) Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 41:27–39. doi: 10.1007/s10295-013-1350-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA)Nankai UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjinPeople’s Republic of China
  3. 3.Tianjin Key Laboratory of Microbial Functional GenomicsTianjinPeople’s Republic of China
  4. 4.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinPeople’s Republic of China

Personalised recommendations