Applied Microbiology and Biotechnology

, Volume 101, Issue 13, pp 5291–5300 | Cite as

Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase

  • Liyuan Li
  • Guohui Pan
  • Xifen Zhu
  • Keqiang Fan
  • Wubin Gao
  • Guomin Ai
  • Jinwei Ren
  • Mingxin Shi
  • Carlos Olano
  • José A. Salas
  • Keqian Yang
Biotechnologically relevant enzymes and proteins


Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both l- and d- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.


Jadomycin JadS Glycosyltransferase Glycosylation Precursor-directed biosynthesis Cytotoxicity 



This work was supported by the National Natural Science Foundation of China (Grant: 31130001). We thank Ajeeth Adhikari at The Scripps Research Institute for critical reading of this manuscript, and Dr. Chin-Yuan Chang at The Scripps Research Institute for helping analyze the structure model of JadS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8256_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1977 kb)


  1. Ayer SW, Mcinnes AG, Thibault P, Walter JA, Doull JL, Parnell T, Vining LC (1991) Jadomycin, a novel 8H-Benz[b]oxazolo[3,2-f]phenanthridine antibiotic from Streptomyces venezuelae ISP5230. Tetrahedron Lett 32:6301–6304. doi: 10.1016/0040-4039(91)80152-V CrossRefGoogle Scholar
  2. Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49. doi: 10.1016/0378-1119(92)90627-2 CrossRefPubMedGoogle Scholar
  3. Borissow CN, Graham CL, Syvitski RT, Reid TR, Blay J, Jakeman DL (2007) Stereochemical integrity of oxazolone ring-containing jadomycins. Chembiochem 8:1198–1203. doi: 10.1002/cbic.200700204 CrossRefPubMedGoogle Scholar
  4. Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS, Phillips GN (2011) Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci U S A 108:17649–17654. doi: 10.1073/pnas.1108484108 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen Y, Fan K, He Y, Xu X, Peng Y, Yu T, Jia C, Yang K (2010) Characterization of JadH as an FAD- and NAD(P)H-dependent bifunctional hydroxylase/dehydrase in jadomycin biosynthesis. Chembiochem 11:1055–1060. doi: 10.1002/cbic.201000178 CrossRefPubMedGoogle Scholar
  6. Chen YH, Wang CC, Greenwell L, Rix U, Hoffmeister D, Vining LC, Rohr J, Yang KQ (2005) Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase. J Biol Chem 280:22508–22514. doi: 10.1074/jbc.M414229200 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Claesson M, Siitonen V, Dobritzsch D, Metsa-Ketela M, Schneider G (2012) Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. FEBS J 279:3251–3263. doi: 10.1111/j.1742-4658.2012.08711.x CrossRefPubMedGoogle Scholar
  8. Cottreau KM, Spencer C, Wentzell JR, Graham CL, Borissow CN, Jakeman DL, McFarland SA (2010) Diverse DNA-cleaving capacities of the jadomycins through precursor-directed biosynthesis. Org Lett 12:1172–1175. doi: 10.1021/Ol902907r CrossRefPubMedGoogle Scholar
  9. Doull JL, Ayer SW, Singh AK, Thibault P (1993) Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:869–871. doi: 10.7164/antibiotics.46.869 CrossRefPubMedGoogle Scholar
  10. Doull JL, Singh AK, Hoare M, Ayer SW (1994) Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13:120–125CrossRefPubMedGoogle Scholar
  11. Dupuis SN, Veinot T, Monro SM, Douglas SE, Syvitski RT, Goralski KB, McFarland SA, Jakeman DL (2011) Jadomycins derived from the assimilation and incorporation of norvaline and norleucine. J Nat Prod 74:2420–2424. doi: 10.1021/np200689w CrossRefPubMedGoogle Scholar
  12. Fan K, Pan G, Peng X, Zheng J, Gao W, Wang J, Wang W, Li Y, Yang K (2012a) Identification of JadG as the B ring opening oxygenase catalyzing the oxidative C-C bond cleavage reaction in jadomycin biosynthesis. Chem Biol 19:1381–1390. doi: 10.1016/j.chembiol.2012.09.009 CrossRefPubMedGoogle Scholar
  13. Fan K, Zhang X, Liu H, Han H, Luo Y, Wang Q, Geng M, Yang K (2012b) Evaluation of the cytotoxic activity of new jadomycin derivatives reveals the potential to improve its selectivity against tumor cells. J Antibiot 65:449–452. doi: 10.1038/ja.2012.48 CrossRefPubMedGoogle Scholar
  14. Fischer C, Lipata F, Rohr J (2003) The complete gene cluster of the antitumor agent gilvocarcin V and its implication for the biosynthesis of the gilvocarcins. J Am Chem Soc 125:7818–7819. doi: 10.1021/ja034781q CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fu DH, Jiang W, Zheng JT, Zhao GY, Li Y, Yi H, Li ZR, Jiang JD, Yang KQ, Wang Y, Si SY (2008) Jadomycin B, an aurora-B kinase inhibitor discovered through virtual screening. Mol Cancer Ther 7:2386–2393. doi: 10.1158/1535-7163.Mct-08-0035 CrossRefPubMedGoogle Scholar
  16. Gantt RW, Peltier-Pain P, Thorson JS (2011) Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 28:1811–1853. doi: 10.1039/c1np00045d CrossRefPubMedGoogle Scholar
  17. Henkel T, Rohr J, Beale JM, Schwenen L (1990) Landomycins, new angucycline antibiotics from Streptomyces sp. I Structural studies on landomycins A-D. J Antibiot 43:492–503. doi: 10.7164/antibiotics.43.492 CrossRefPubMedGoogle Scholar
  18. Hoffmeister D, Ichinose K, Domann S, Faust B, Trefzer A, Drager G, Kirschning A, Fischer C, Kunzel E, Bearden DW, Rohr J, Bechthold A (2000) The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem Biol 7:821–831. doi: 10.1016/S1074-5521(00)00029-6 CrossRefPubMedGoogle Scholar
  19. Issa ME, Hall SR, Dupuis SN, Graham CL, Jakeman DL, Goralski KB (2014) Jadomycins are cytotoxic to ABCB1-, ABCC1-, and ABCG2-overexpressing MCF7 breast cancer cells. Anti-Cancer Drugs 25:255–269. doi: 10.1097/CAD.0000000000000043 CrossRefPubMedGoogle Scholar
  20. Jakeman DL, Bandi S, Graham CL, Reid TR, Wentzell JR, Douglas SE (2009) Antimicrobial activities of jadomycin B and structurally related analogues. Antimicrob Agents Chemother 53:1245–1247. doi: 10.1128/AAC.00801-08 CrossRefPubMedGoogle Scholar
  21. Jakeman DL, Borissow CN, Graham CL, Timmons SC, Reid TR, Syvitski RT (2006a) Substrate flexibility of a 2,6-dideoxyglycosyltransferase. Chem Commun:3738–3740. doi: 10.1039/b608847c
  22. Jakeman DL, Farrell S, Young W, Doucet RJ, Timmons SC (2005a) Novel jadomycins: incorporation of non-natural and natural amino acids. Bioorg Med Chem Lett 15:1447–1449. doi: 10.1016/j.bmcl.2004.12.082 CrossRefPubMedGoogle Scholar
  23. Jakeman DL, Graham CL, Reid TR (2005b) Novel and expanded jadomycins incorporating non-proteogenic amino acids. Bioorg Med Chem Lett 15:5280–5283. doi: 10.1016/j.bmcl.2005.08.047 CrossRefPubMedGoogle Scholar
  24. Jakeman DL, Graham CL, Young W, Vining LC (2006b) Culture conditions improving the production of jadomycin B. J Ind Microbiol Biotechnol 33:767–772. doi: 10.1007/s10295-006-0113-4 CrossRefPubMedGoogle Scholar
  25. Janso JE, Haltli BA, Eustaquio AS, Kulowski K, Waldman AJ, Zha L, Nakamura H, Bernan VS, He H, Carter GT, Koehn FE, Balskus EP (2014) Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica. Tetrahedron 70:4156–4164. doi: 10.1016/j.tet.2014.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kharel MK, Nybo SE, Shepherd MD, Rohr J (2010) Cloning and characterization of the ravidomycin and chrysomycin biosynthetic gene clusters. Chembiochem 11:523–532. doi: 10.1002/cbic.200900673 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  28. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi: 10.1093/nar/gkt1178 CrossRefPubMedGoogle Scholar
  29. Martinez-Farina CF, Jakeman DL (2015) Jadomycins, put a bigger ring in it: isolation of seven- to ten-membered ring analogues. Chem Commun 51:14617–14619. doi: 10.1039/c5cc05571g CrossRefGoogle Scholar
  30. Martinez-Farina CF, Robertson AW, Yin H, Monro S, McFarland SA, Syvitski RT, Jakeman DL (2015) Isolation and synthetic diversification of jadomycin 4-amino-l-phenylalanine. J Nat Prod 78:1208–1214. doi: 10.1021/np5009398 CrossRefPubMedGoogle Scholar
  31. Moncrieffe MC, Fernandez MJ, Spiteller D, Matsumura H, Gay NJ, Luisi BF, Leadlay PF (2012) Structure of the glycosyltransferase EryCIII in complex with its activating P450 homologue EryCII. J Mol Biol 415:92–101. doi: 10.1016/j.jmb.2011.10.036 CrossRefPubMedGoogle Scholar
  32. Monro SM, Cottreau KM, Spencer C, Wentzell JR, Graham CL, Borissow CN, Jakeman DL, McFarland SA (2011) Copper-mediated nuclease activity of jadomycin B. Bioorg Med Chem 19:3357–3360. doi: 10.1016/j.bmc.2011.04.043 CrossRefPubMedGoogle Scholar
  33. Perez M, Lombo F, Zhu L, Gibson M, Brana AF, Rohr J, Salas JA Mendez C (2005) combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun:1604–1606. doi: 10.1039/b417815g
  34. Rix U, Zheng J, Remsing Rix LL, Greenwell L, Yang K, Rohr J (2004) The dynamic structure of jadomycin B and the amino acid incorporation step of its biosynthesis. J Am Chem Soc 126:4496–4497. doi: 10.1021/ja031724o CrossRefPubMedGoogle Scholar
  35. Robertson AW, Martinez-Farina CF, Smithen DA, Yin H, Monro S, Thompson A, McFarland SA, Syvitski RT, Jakeman DL (2015a) Eight-membered ring-containing jadomycins: implications for non-enzymatic natural products biosynthesis. J Am Chem Soc 137:3271–3275. doi: 10.1021/ja5114672 CrossRefPubMedGoogle Scholar
  36. Robertson AW, Martinez-Farina CF, Syvitski RT, Jakeman DL (2015b) Characterization of l-digitoxosyl-phenanthroviridin from Streptomyces venezuelae ISP5230. J Nat Prod 78:1942–1948. doi: 10.1021/acs.jnatprod.5b00277 CrossRefPubMedGoogle Scholar
  37. Salas JA, Mendez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232. doi: 10.1016/j.tim.2007.03.004 CrossRefPubMedGoogle Scholar
  38. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  39. Sharif EU, O’Doherty GA (2012) Biosynthesis and total synthesis studies on the jadomycin family of natural products. European J Org Chem. doi: 10.1002/ejoc.201101609 PubMedPubMedCentralGoogle Scholar
  40. Shepherd MD, Liu T, Mendez C, Salas JA, Rohr J (2011) Engineered biosynthesis of gilvocarcin analogues with altered deoxyhexopyranose moieties. Appl Environ Microbiol 77:435–441. doi: 10.1128/AEM.01774-10 CrossRefPubMedGoogle Scholar
  41. Tam HK, Harle J, Gerhardt S, Rohr J, Wang GJ, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O (2015) Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2. Angew Chem Int Edit 54:2811–2815. doi: 10.1002/anie.201409792 CrossRefGoogle Scholar
  42. Thibodeaux CJ, Melançon CE, H-w L (2008) Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Edit 47:9814–9859. doi: 10.1002/anie.200801204 CrossRefGoogle Scholar
  43. Walsh C, Freel Meyers CL, Losey HC (2003) Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem 46:3425–3436. doi: 10.1021/jm030257i CrossRefPubMedGoogle Scholar
  44. Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA 106:8617–8622. doi: 10.1073/pnas.0900592106 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang L, White RL, Vining LC (2002) Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. Microbiology 148:1091–1103CrossRefPubMedGoogle Scholar
  46. Wang W, Li X, Wang J, Xiang S, Feng X, Yang K (2013) An engineered strong promoter for streptomycetes. Appl Environ Microbiol 79:4484–4492. doi: 10.1128/AEM.00985-13 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang WS, Ji JJ, Li X, Wang J, Li SS, Pan GH, Fan KQ, Yang KQ (2014) Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci USA 111:5688–5693. doi: 10.1073/pnas.1324253111 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448. doi: 10.1074/jbc.M110.143081 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang Y, Pan G, Zou Z, Fan K, Yang K, Tan H (2013) JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 90:884–897. doi: 10.1111/mmi.12406 CrossRefPubMedGoogle Scholar
  50. Zheng JT, Rix U, Zhao L, Mattingly C, Adams V, Chen Q, Rohr J, Yang KQ (2005) Cytotoxic activities of new jadomycin derivatives. J Antibiot 58:405–408. doi: 10.1038/ja.2005.51 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain

Personalised recommendations