Skip to main content
Log in

Growth kinetics and scale-up of Agrobacterium tumefaciens

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Production of recombinant proteins in plants through Agrobacterium-mediated transient expression is a promising method of producing human therapeutic proteins, vaccines, and commercial enzymes. This process has been shown to be viable at a large scale and involves growing large quantities of wild-type plants and infiltrating the leaf tissue with a suspension of Agrobacterium tumefaciens bearing the genes of interest. This study examined one of the steps in this process that had not yet been optimized: the scale-up of Agrobacterium production to sufficient volumes for large-scale plant infiltration. Production of Agrobacterium strain C58C1 pTFS40 was scaled up from shake flasks (50–100 mL) to benchtop (5 L) scale with three types of media: Lysogeny broth (LB), yeast extract peptone (YEP) media, and a sucrose-based defined media. The maximum specific growth rate (μ max) of the strain in the three types of media was 0.46 ± 0.04 h−1 in LB media, 0.43 ± 0.03 h−1 in YEP media, and 0.27 ± 0.01 h−1 in defined media. The maximum biomass concentration reached at this scale was 2.0 ± 0.1, 2.8 ± 0.1, and 2.6 ± 0.1 g dry cell weight (DCW)/L for the three media types. Production was successfully scaled up to a 100-L working volume reactor with YEP media, using k L a as the scale-up parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ankenbauer RG, Best EA, Palanca CA, Nester EW (1991) Mutants of the Agrobacterium tumefaciens VirA gene exhibiting acetosyringone-independent expression of the Vir regulon. Mol Plant-Microbe Interact 4(4):400–406

    Article  CAS  PubMed  Google Scholar 

  • Blanch HW, Clark DS (1996) Biochemical engineering. Marcel Dekker., New York

  • Bruckner K, Tissier A (2013) High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods 9(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  • Chichester JA, Yusibov V (2007) Plants as alternative systems for production of vaccines. Hum Vaccines 3(4):146–148

    Article  CAS  Google Scholar 

  • D'Aoust MA, Lavoie PO, Couture MMJ, Trepanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vezina LP (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6(9):930–940

    Article  PubMed  Google Scholar 

  • Dussap CG, De Vita D, Pons A (1991) Modeling growth and succinoglucan production by Agrobacterium radiobacter NCIB 9042 in batch cultures. Biotechnology and Bioengineering 38(1):65–74

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    Article  CAS  PubMed  Google Scholar 

  • Geyer BC, Kannan L, Garnaud P-E, Broomfield CA, Cadieux CL, Cherni I, Hodgins SM, Kasten SA, Kelley K, Kilbourne J, Oliver ZP, Otto TC, Puffenberger I, Reeves TE, Robbins N II, Woods RR, Soreq H, Lenz DE, Cerasoli DM, Mor TS (2010) Plant-derived human butyrylcholinesterase, but not an organophosphorous-compound hydrolyzing variant thereof, protects rodents against nerve agents. Proc Natl Acad Sci U S A 107(47):20251–20256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez E, Lucero MS, Chimeno Zoth S, Carballeda JM, Gravisaco MJ, Berinstein A (2013) Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus. Vaccine 31(23):2623–2627

    Article  PubMed  Google Scholar 

  • Grohs BM, Niu YQ, Veldhuis LJ, Trabelsi S, Garabagi F, Hassell JA, McLean MD, Hall JC (2010) Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells. J Agric Food Chem 58(18):10056–10063

    Article  CAS  PubMed  Google Scholar 

  • Ha S-J, Kim S-Y, Jin-Ho S, Oh D-K, Jung-Kul L (2007) Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. App Microbiol Biotechnol 74(5):974–980

    Article  CAS  Google Scholar 

  • Hahn S, Giritch A, Bartels D, Bortesi L, Gleba Y (2015) A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnol J 13(5):708–716

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200(1–2):107–116

    Article  CAS  PubMed  Google Scholar 

  • Holtz BR, Berquist BR, Bennett LD, Kommineni VJM, Munigunti RK, White EL, Wilkerson DC, Wong K-YI, Ly LH, Marcel S (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol J 13(8):1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Jin SG, Song YN, Pan SQ, Nester EW (1993) Characterization of a VIRg mutation that confers constitutive virulence gene-expression in Agrobacterium. Mol Microbiol 7(4):555–562

    Article  CAS  PubMed  Google Scholar 

  • Joh LD, Wroblewski T, Ewing NN, VanderGheynst JS (2005) High-level transient expression of recombinant protein in lettuce. Biotechnol Bioeng 91(7):861–871

  • Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1(6):285–297

    Article  CAS  PubMed  Google Scholar 

  • Jung SK, Lindenmuth BE, McDonald KA, Hwang MS, Bui MQN, Falk BW, Uratsu SL, Phu ML, Dandekar AM (2014) Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves. Biotechnol Prog 30(4):905–915

    Article  CAS  PubMed  Google Scholar 

  • Jung SK, McDonald KA, Dandekar AM (2015) Effect of leaf incubation temperature profiles on Agrobacterium tumefaciens-mediated transient expression. Biotechnol Prog 31(3):783–790

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Baek K, Park CM (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 28(8):1159–1167

  • Klimyuk V, Pogue G, Herz S, Butler J, Haydon H (2014) Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’ technology: GMP-compliant facilities for small- and large-scale manufacturing. In: Palmer K, Gleba Y (eds) Plant viral vectors. Springer, Berlin, pp 127–154

    Google Scholar 

  • Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL (2011) Plant-made trastuzumab (Herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 6(3):e17541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang X, Yang L, Fan Y, Zhu X, Wang X (2016) Large-scale production of foreign proteins via the novel plant transient expression system in Pisum sativum L. Plant Biotechnol Rep 10(4):207–217

    Article  Google Scholar 

  • Mett V, Lyons J, Musiychuk K, Chichester JA, Brasil T, Couch R, Sherwood R, Palmer GA, Streatfield SJ, Yusibov V (2007) A plant-produced plague vaccine candidate confers protection to monkeys. Vaccine 25(16):3014–3017

    Article  CAS  PubMed  Google Scholar 

  • Nandi S, Kwong AT, Holtz BR, Erwin RL, Marcel S, McDonald KA (2016) Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs 8(8):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plesha MA, Huang TK, Dandekar AM, Falk BW, McDonald KA (2007) High-level transient production of a heterologous protein in plants by optimizing induction of a chemically inducible viral amplicon expression system. Biotechnol Prog 23(6):1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8(5):638–654

    Article  CAS  PubMed  Google Scholar 

  • Qiu XG, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei HY, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu BL, Strong JE, Zeitlin L, Kobinger GP (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514(7520):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamloul M, Trusa J, Mett V, Yusibov V (2014) Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp (86)

  • Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher T, Sack M, Schillberg S, Reimann A, Fischer R (2015) Application of a scalable plant transient gene expression platform for malaria vaccine development. Front Plant Sci 6:1169

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Citovsky V editors (2008) Agrobacterium—from biology to biotechnology. Springer, New York, 735 p

  • Walwyn DR, Huddy SM, Rybicki EP (2015) Techno-economic analysis of horseradish peroxidase production using a transient expression system in Nicotiana benthamiana. Appl Biochem Biotechnol 175(2):841–854

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3(2):259–273

  • Wu H-Y, Liu K-H, Wang Y-C, Wu J-F, Chiu W-L, Chen C-Y, Wu S-H, Sheen J, Lai E-M (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53(2):289–298

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CBET-1067423) and the National Science Foundation G-K12 RESOURCE Fellowship program (DGE-0948021) and received funding for equipment from Chevron Corporation (grant no. 0700679S024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. McDonald.

Ethics declarations

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leth, I.K., McDonald, K.A. Growth kinetics and scale-up of Agrobacterium tumefaciens . Appl Microbiol Biotechnol 101, 4895–4903 (2017). https://doi.org/10.1007/s00253-017-8241-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8241-5

Keywords