Abstract
The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.
This is a preview of subscription content, access via your institution.








References
Abbas AK, Lichtman AHH, Pillai S (2016) Basic immunology. Elsevier, San Francisco ISBN: 978-0-323-39082-8
Adedapo AA, Mogbojuri OM, Emikpe BO (2009) Safety evaluations of the aqueous extract of the leaves of Moringa oleifera in rats. J Med Plants Res 3(8):586–591
Amaglo NK, Bennett RN, Lo Curto RB, Rosa EAS, Lo Turco V, Giuffrida A, Lo Turco A, Crea F, Timpo GM (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122:1047–1054. doi:10.1016/j.foodchem.2010.03.073
Asiedu-Gyekye IJ, Frimpong-Manso S, Awortwe C, Antwi DA, Nyarko AK (2014) Micro- and macroelemental composition and safety evaluation of the nutraceutical Moringa oleifera leaves. J Toxicol 2014:786979. doi:10.1155/2014/786979
Aslam M, Anwar F, Nadeem R, Rashid U, Kazi TG, Nadeem M (2005) Mineral composition of Moringa oleifera leaves and pods from dfferent regions of Punjab, Pakistan. Asian J Plant Sci 4:417–421. doi:10.3923/ajps.2005.417.421
Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR (2010) DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs74Int cells. Environ Mol Mutagen 51:304–314. doi:10.1002/em.20546
Awodele O, Oreagba IA, Odoma S, Teixeira Da Silva JA, Osunkalu VO (2012) Toxicological evaluation of the aqueous leaf extract of Moringa oleifera Lam. (Moringaceae). J Ethnopharmacol 139:330–336. doi:10.1016/j.jep.2011.10.008
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118. doi:10.1038/77783
Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose tree Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J Agric Food Chem 51:3546–3553. doi:10.1021/jf0211480
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6:e1000902. doi:10.1371/journal.ppat.1000902
Biagi E, Candela M, Centanni M, Consolandi C, Rampelli S, Turroni S, Severgnini M, Peano C, Ghezzo A, Scurti M, Salvioli S, Franceschi C, Brigidi P (2014) Gut microbiome in Down syndrome. PLoS One 9:e112023. doi:10.1371/journal.pone.0112023
Birchenough GM, Nyström EE, Johansson ME, Hansson GC (2016) A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352:1535–1542. doi:10.1126/science.aaf7419
Croswell A, Amir E, Teggatz P, Barman M, Salzman NH (2009) Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric salmonella infection. Infect Immun 77:2741–2753. doi:10.1128/IAI.00006-09
Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS One 9:e111988. doi:10.1371/journal.pone.0111988
Derrien M, Belzer C, de Vos WM (2016) Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. doi:10.1016/j.micpath.2016.02.005
Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341. doi:10.1007/s00394-015-0852-y
Elshaer D, Begun J (2017) The role of barrier function, autophagy, and cytokines in maintaining intestinal homeostasis. Semin Cell Dev Bio 61:51–59. doi:10.1016/j.semcdb.2016.08.018
Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal 1:5
Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785. doi:10.1073/pnas.0706625104
Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689. doi:10.1016/j.immuni.2009.08.020
Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516. doi:10.1038/nri3228
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi:10.1126/science.1124234
Goyal BR, Agrawal BB, Goyal RK, Mehta AA (2007) Phyto-pharmacology of Moringa oleifera Lam. An overview. Nat Prod Rad 6(4):347–353
Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2):85–94. doi:10.1016/S0898-6568(00)00149-2
Han J, Lin K, Sequeira C, Borchers CH (2015) An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 854:86–94. doi:10.1016/j.aca.2014.11.015
Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokar R (2016) Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front Microbiol 7:1706. doi:10.3389/fmicb.2016.01706
Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118. doi:10.1126/ science.1058709
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498. doi:10.1016/j.cell.2009.09.033
Jia W, Whitehead RN, Griffiths L, Dawson C, Bai H, Waring RH, Ramsden DB, Hunter JO, Cauchi M, Bessant C, Fowler DP, Walton C, Turner C, Cole JA (2012) Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. FEMS Immunol Med Microbiol 65:55–68. doi:10.1111/j.1574-695X.2012.00935
Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665. doi:10.1073/pnas.1006451107
Kasolo JN, Bimenya GS, Ojok L, Ochieng J, Ogwal-Okeng JW (2010) Phyochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J Med Plants Res 4(9):753–757
Kaunitz J, Nayyar P (2015) Bugs, genes, fatty acids, and serotonin: Unraveling inflammatory bowel disease? F1000 Research 4: F1000 Faculty Rev-1146. doi: 10.12688/f1000research.6456.1
Keilbaugh SA, Shin ME, Banchereau RF, McVay LD, Boyko N, Artis D, Cebra JJ, Wu GD (2005) Activation of RegIII beta/gamma and interferon gamma expression in the intestinal tract of SCID mice: an innate response to bacterial colonization of the gut. Gut 54:623–629. doi:10.1136/gut.2004.056028
Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333. doi:10.1016/j.it.2005.04.008
Koboziev I, Webb CR, Furr KL, Grisham MB (2014) Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol and Med 68:122–133. doi:10.1016/j.freeradbiomed.2013.11.008
Lako J, Trenerry VC, Wahlqvist M, Wattanapenpaiboon N, Sotheeswaran S, Premier R (2007) Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 101:1727–1741. doi:10.1016/j.foodchem.2006.01.031
Lavelle A, Lennon G, O’sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O'Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC, O'Connell PR (2015) Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64:1553–1561. doi:10.1136/gutjnl-2014-307873
Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, Song YM, Lee K, Sung J, Ko G (2016) The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. doi:10.1136/gutjnl-2015-311326
Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:119–129. doi:10.1016/j.chom.2007.06.010
Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625. doi:10.1038/nature07008
Mbikay M (2012) Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Front Pharmacol 3:24. doi:10.3389/fphar.2012.00024
McOrist AL, Warhurst M, McOrist S, Bird AR (2001) Colonic infection by Bilophila wadsworthia in pigs. J Clin Microbiol 39:1577–1579. doi:10.1128/JCM.39.4.1577-1579
Million M, Lagier J, Yahav D, Paul M (2013) Gut bacterial microbiota and obesity. Clin Microbiol Infect 19:305–313. doi:10.1111/1469-0691.12172
Miwa H (2002) High-performance liquid chromatographic determination of free fatty acids and esterified fatty acids in biological materials as their 2-nitrophenylhydrazides. Anal Chim Acta 465:237–255. doi:10.1016/S0003-2670(01)01582-3
Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79. doi:10.1186/gb-2012-13-9-r79
Mukhopadhya I, Hansen R, El-Omar EM, Hold GL (2012) IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 9:219–230. doi:10.1038/nrgastro. 2012.14
O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. doi:10.1038/ sj. embor.7400731
Okugawa S, Ota Y, Kitazawa T, Nakayama K, Yanagimoto S, Tsukada K, Kawada M, Kimura S (2003) Januskinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am J Physiol Cell Physiol 285:C399–C408. doi:10.1152/ajpcell.00026.2003
Qiu X, Zhang M, Yang X, Hong N, Yu C (2013) Faecalibacterium prausnitzii up regulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis 7:e558–e568. doi:10.1016/j.crohns.2013.04.002
Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858. doi:10.2337/db14-1916
Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323. doi:10.1038/nri2515
Rowan F, Docherty NG, Murphy M, Murphy B, Calvin Coffey J, O'Connell PR (2010) Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon rectum 53:1530–1536. doi:10.1007/DCR.0b013e3181f1e620
Samonte VA, Goto M, Ravindranath TM, Fazal N, Holloway VM, Goyal A, Gamelli RL, Sayeed MM (2004) Exacerbation of intestinal permeability in rats after a two-hit injury: burn and Enterococcus faecalis infection. Crit Care Med 32:2267–2273 PMID: 15640640
Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N (2013) Host interactions with segmented filamentous bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 25:342–351. doi:10.1016/j.smim. 2013.09.001
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60. doi:10.1016/j.phrs.2012.10.020
Shih MC, Chang CM, Kang SM, Tsai ML (2011) Effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of Moringa oleifera. Int J Mol Sci 12:6077–6088. doi:10.3390/ijms 12096077
Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503. doi:10.1016/j.tibtech. 2015.06.011
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitziiis an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn’s disease patients. Proc Natl Acad Sci U S A 105:16731–16736. doi:10.1073/pnas.0804812105
Teixeira EM, Carvalho MR, Neves VA, Silva MA, Arantes-Pereira L (2014) Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem 147:51–54. doi:10.1016/j.foodchem.2013.09.135
Vermeiren J, Van den Abbeele P, Laukens D, Vigsnaes LK, De Vos M, Boon N, Van de Wiele T (2012) Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol Ecol 79:685–696. doi:10.1111/j.1574-6941.2011.01252.x
Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2013) Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism 4:42. doi:10.1186/2040-2392-4-42
Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760. doi:10.1038/nprot.2011.319
Xu Y, Zhang X, Chen C, Xiang H, Xie Q (2013) Monitoring of the bacterial and fungal biodiversity and dynamics during Massa Medicata Fermentata fermentation. Appl Microbiol Biotechnol 97:9647–9655. doi:10.1007/s00253-013-5187-0
Acknowledgments
We thank the American Journal Experts (AJE) for the English language editing.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Funding
The work was funded by Jilin Province Science and Technology Institute of China (No. 20140203001YY, Nos. 20140203024NY and 20150204076NY) and Jilin Province Development and Reform Commission of China (No. 2014Y080 and No. 2015Y051).
Conflict of interest
The authors declare that they have no competing interests.
Ethical approval
This study was approved by the Animal Ethics Committee of Jilin University. Compliance with Directive 2010/63/EU on the protection of animals used for experimental and other scientific purposes.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Electronic supplementary material
ESM 1
(PDF 456 kb)
Rights and permissions
About this article
Cite this article
Gao, X., Xie, Q., Liu, L. et al. Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam.-supplemented diet is related to the modulation of gut microbiota in mice. Appl Microbiol Biotechnol 101, 5115–5130 (2017). https://doi.org/10.1007/s00253-017-8233-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-017-8233-5
Keywords
- Moringa oleifera Lam.
- LPS
- Inflammatory
- Intestinal homeostasis
- AMPs
- Sutterella
- Faecalibacterium prausnitzii
- segmented filamentous bacteria