De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae

Abstract

The production of natural aroma compounds is an expanding field within the branch of white biotechnology. Three aromatic compounds of interest are cinnamaldehyde, the typical cinnamon aroma that has applications in agriculture and medical sciences, as well as cinnamyl alcohol and hydrocinnamyl alcohol, which have applications in the cosmetic industry. Current production methods, which rely on extraction from plant materials or chemical synthesis, are associated with drawbacks regarding scalability, production time, and environmental impact. These considerations make the development of a sustainable microbial-based production highly desirable. Through steps of rational metabolic engineering, we engineered the yeast Saccharomyces cerevisiae as a microbial host to produce trans-cinnamic acid derivatives cinnamaldehyde, cinnamyl alcohol, and hydrocinnamyl alcohol, from externally added trans-cinnamic acid or de novo from glucose as a carbon source. We show that the desired products can be de novo synthesized in S. cerevisiae via the heterologous overexpression of the genes encoding phenylalanine ammonia lyase 2 from Arabidopsis thaliana (AtPAL2), aryl carboxylic acid reductase (acar) from Nocardia sp., and phosphopantetheinyl transferase (entD) from Escherichia coli, together with endogenous alcohol dehydrogenases. This study provides a proof of concept and a strain that can be further optimized for production of high-value aromatic compounds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bang HB, Lee YH, Kim SC, Sung CK, Jeong KJ (2016) Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb Cell Factories 15:16. doi:10.1186/s12934-016-0415-9

    Article  Google Scholar 

  2. Becker J, Armstrong G, Vandermerwe M, Lambrechts M, Vivier M, Pretorius I (2003) Metabolic engineering of for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85. doi:10.1016/s1567-1356(03)00157-0

    CAS  Article  PubMed  Google Scholar 

  3. Bruder S, Boles E (2016) Improvement of the yeast based (R)-phenylacetylcarbinol production process via reduction of by-product formation. Biochem Eng J 120:103–112. doi:10.1016/j.bej.2016.09.021

    Article  Google Scholar 

  4. Bruder S, Reifenrath M, Thomik T, Boles E, Herzog K (2016) Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae. Microb Cell Factories 15:127. doi:10.1186/s12934-016-0526-3

    Article  Google Scholar 

  5. Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564. doi:10.1016/j.phytochem.2004.05.006

    CAS  Article  PubMed  Google Scholar 

  6. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159–5164. doi:10.1073/pnas.1323464111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. doi:10.1038/nprot.2007.13

    CAS  Article  PubMed  Google Scholar 

  9. Gold N, Gowen C, Lussier F-X, Cautha S, Mahadevan R, Martin V (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Factories 14:73. doi:10.1186/s12934-015-0252-2

    Article  Google Scholar 

  10. Hanci D, Altun H, Cetinkaya EA, Muluk NB, Cengiz BP, Cingi C (2016) Cinnamaldehyde is an effective anti-inflammatory agent for treatment of allergic rhinitis in a rat model. Int J Pediatr Otorhi 84:81–87. doi:10.1016/j.ijporl.2016.03.001

    Article  Google Scholar 

  11. Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774. doi:10.1128/AEM.02681-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Hauf J, Zimmermann FK, Mueller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzym Microb Technol 26:688–698

    CAS  Article  Google Scholar 

  13. Kim B, Cho BR, Hahn JS (2013) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–124. doi:10.1002/bit.24993/abstract

    Article  PubMed  Google Scholar 

  14. Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155. doi:10.1186/1475-2859-11-155

    CAS  Article  Google Scholar 

  15. Larroy C, Fernandéz MR, Gonzales E, Parés X, Biosca JA (2002) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene. Biochem J 361:163–172

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Lehka BJ, Eichenberger M, Bjørn-Yoshimoto WE, Garcia Vanegas K, Buijs N, Jensen NB, Dyekjær JD, Jenssen H, Simon E, Naesby M (2017) Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double-bond reductase. FEMS Yeast Res 17:fox004. doi:10.1093/femsyr/fox004

    Article  Google Scholar 

  17. Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11. doi:10.1016/j.ymben.2015.08.007

    Article  PubMed  Google Scholar 

  18. Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825. doi:10.1007/s00253-011-3167-9

    CAS  Article  PubMed  Google Scholar 

  19. Luttik MA, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10:141–153. doi:10.1016/j.ymben.2008.02.002

    CAS  Article  PubMed  Google Scholar 

  20. Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and L-ascorbic acid-producing strains. Yeast 30:365–378. doi:10.1002/yea.2969

    CAS  Article  PubMed  Google Scholar 

  21. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554. doi:10.1016/j.ymben.2011.06.005

    CAS  Article  PubMed  Google Scholar 

  22. McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Factories 13:123. doi:10.1186/s12934-014-0123-2

    Article  Google Scholar 

  23. Miyakoshi S, Negishi Y, Sekiya Y, Nakajima S (2016) Improved conversion of cinnamaldehyde derivatives to diol compounds via a pyruvate decarboxylase-dependent mechanism in budding yeast. J Biosci Bioeng 121:265–267. doi:10.1016/j.jbiosc.2015.06.013

    CAS  Article  PubMed  Google Scholar 

  24. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768. doi:10.1146/annurev.micro.56.012302.161038

    CAS  Article  PubMed  Google Scholar 

  25. Richmond HH (1947) Preparation of cinnamaldehyde. Patent no. US 2529186 A

  26. Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188. doi:10.1016/j.ymben.2015.08.003

    CAS  Article  PubMed  Google Scholar 

  27. Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  28. Singh G, Maurya S, DeLampasona MP, Catalan CA (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45:1650–1661. doi:10.1016/j.fct.2007.02.031

    CAS  Article  PubMed  Google Scholar 

  29. Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576. doi:10.1099/00221287-140-3-569

    CAS  Article  PubMed  Google Scholar 

  30. Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. BioTechniques 40:73–78. doi:10.2144/000112040

    CAS  Article  PubMed  Google Scholar 

  31. Utchariyakiat I, Surassmo S, Jaturanpinyo M, Khuntayaporn P, Chomnawang MT (2016) Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement Altern Med 16:158. doi:10.1186/s12906-016-1134-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vargas-Tah A, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:116. doi:10.3389/fbioe.2015.00116

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517. doi:10.1002/yea.320080703

    CAS  Article  PubMed  Google Scholar 

  34. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463. doi:10.1016/j.ymben.2011.04.005

    CAS  Article  PubMed  Google Scholar 

  35. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315. doi:10.1007/s00253-010-2707-z

    CAS  Article  PubMed  Google Scholar 

  36. Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050. doi:10.1128/AEM.02395-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Stefan Bruder is gratefully acknowledged for providing the plasmid pRS41K_optACAR_optEntD. The CGQ system was kindly provided by Aquila Biolabs, GmbH. We kindly acknowledge the support of this work by the YEASTCELL project (REA Grant No. 606795) under the EU’s Seventh Framework Programme for Research (FP7).

Authors’ contribution

MG performed the experimental work, analyzed the data, and wrote the manuscript. MO and EB initiated the work on tCA production. MG, JDK, and PB designed the experiments. JDK and PB helped in data analysis. LP helped in the identification of unknown compounds. JDK, PB, MO, and EB helped in drafting the manuscript. All authors have read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mislav Oreb or Paola Branduardi.

Ethics declarations

This study was funded by the European Commission under the Seventh Framework Programme, Marie-Curie ITN YEASTCELL (grant number 606795).

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 721 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gottardi, M., Knudsen, J.D., Prado, L. et al. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 101, 4883–4893 (2017). https://doi.org/10.1007/s00253-017-8220-x

Download citation

Keywords

  • trans-cinnamic acid
  • Bioconversion
  • Cinnamaldehyde
  • Cinnamyl alcohol
  • Hydrocinnamyl alcohol