Skip to main content
Log in

Environmental and metabolic parameters affecting the uric acid production of Arxula adeninivorans

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Arxula adeninivorans has previously been shown to naturally secrete the redox molecule uric acid (UA). This property suggested that A. adeninivorans may be capable of functioning as the catalyst for a mediator-less yeast-based microbial fuel cell (MFC) if the level of UA it secretes could be increased. We investigated the effects of a number of parameters on the level of UA produced by A. adeninivorans. The concentration of UA accumulated in a dense cell suspension of A. adeninivorans after 20 h incubation was shown to be significantly lower in aerated suspensions compared with that in anaerobic conditions due to UA being rapidly oxidised by dissolved oxygen. The presence of carbon sources, glucose and glycerol, both caused a reduction in UA production compared with that in starvation conditions. The transgenic A. adeninivorans strain, G1221 (auox), showed higher UA production at 37 °C, but at 47 °C, the wild-type LS3 accumulated higher concentrations; however, elevated temperatures also resulted in very high cell mortality rates. An initial buffer pH of 8 caused a higher concentration of UA to accumulate, but high pH is detrimental to cell metabolism and the cells actively work to lower the pH of their environment. It appears that most parameters which increase the amount of UA produced by A. adeninivorans have concomitant disadvantages for cell metabolism, and as such, its potential as a self-mediating MFC catalyst seems doubtful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkins PW (1997) Physical chemistry, 6th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. App Environ Microbiol 69(3):1548–1555

    Article  CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  CAS  PubMed  Google Scholar 

  • Eisler H, Fröhlich KU, Heidenreich E (2004) Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast. Exp Cell Res 300(2):345–353

    Article  CAS  PubMed  Google Scholar 

  • Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J (1990) The yeast genus Trichosporon spec. LS3; molecular characterization of genomic complexity. Zentralbl Mikrobiol 145(1):3–12

    CAS  PubMed  Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena A, Fernando S, To F (2008) Performance of a yeast-mediated biological fuel cell. Int J of Mol Sci 9(10):1893–1907

    Article  CAS  Google Scholar 

  • Haslett ND (2011) Development of a microbial fuel cell for organic waste bioremediation and simultaneous electricity generation. Lincoln University, Canterbury

    Google Scholar 

  • Haslett ND, Rawson FJ, Barriëre F, Kunze G, Pasco N, Gooneratne R, Baronian KHR (2011) Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens Bioelectron 26(9):3742–3747

    Article  CAS  PubMed  Google Scholar 

  • Hubenova Y, Mitov M (2010) Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 78(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Hubenova YV, Rashkov RS, Buchvarov VD, Arnaudova MH, Babanova SM, Mitov MY (2011) Improvement of yeast-biofuel cell output by electrode modifications. Ind Eng Chem Res 50(2):557–564

    Article  CAS  Google Scholar 

  • Jankowska DA, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G (2013) Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content. J App Microbiol 115(3):796–807

    Article  CAS  Google Scholar 

  • Kannaiah Goud R, Venkata Mohan S (2013) Prolonged applied potential to anode facilitate selective enrichment of bio-electrochemically active Proteobacteria for mediating electron transfer: microbial dynamics and bio-catalytic analysis. Bioresource Technol 137:160–170

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Tech 30(2):145–152

    Article  CAS  Google Scholar 

  • Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4(2 SPEC.ISS):185–193

    Article  CAS  PubMed  Google Scholar 

  • Lee YY, Kim TG, Cho KS (2016) Enhancement of electricity production in a mediatorless air–cathode microbial fuel cell using Klebsiella sp. IR21. Bioproc Biosyst Eng 39(6):1005–1014

    Article  CAS  Google Scholar 

  • Liu J, Li G, Liu H, Zhou X (1994) Purification and properties of uricase from Candida sp. and its application in uric acid analysis in serum. Appl Biochem Biotechnol 47(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, de Jong IM, de Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie Van Leeuwenhoek 59:129–137

    Article  CAS  PubMed  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174(11):3429–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röse H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33(2):157–163

    Article  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629

    Article  PubMed  Google Scholar 

  • Simic MG, Jovanovic SV (1989) Antioxidation mechanisms of uric acid. J Am Chem Soc 111(15):5778–5782

    Article  CAS  Google Scholar 

  • Steinborn G, Wartmann T, Gellissen G, Kunze G (2007) Construction of an Arxula adeninivorans host-vector system based on trp1 complementation. J Biotechnol 127(3):392–401

    Article  CAS  PubMed  Google Scholar 

  • Stöckmann C, Palmen TG, Schroer K, Kunze G, Gellissen G, Büchs J (2014) Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast. J Ind Microbiol Biot 41(6):965–976

    Article  Google Scholar 

  • Tanaka A, Ohnishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferm Technol 45:617–632

    CAS  Google Scholar 

  • Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotech Bioeng 100(5):872–881

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Volkov V (2015) Quantitative description of ion transport via plasma membrane of yeast and small cells. Front Plant Sci 6(425):5–22

    Google Scholar 

  • Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43(17):6870–6874

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Krüger A, Adler K, Duc BM, Kunze I, Kunze G (1995) Temperature-dependent dimorphism of the yeast Arxula adeninivorans LS3. Antonie Van Leeuwenhoek 68:215–223

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Erdmann J, Kunze I, Kunze G (2000) Morphology-related effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3. Arch Microbiol 173(4):253–261

    Article  CAS  PubMed  Google Scholar 

  • Williams J, Trautwein-Schult A, Jankowska D, Kunze G, Squire MA, Baronian K (2014) Identification of uric acid as the redox molecule secreted by the yeast Arxula adeninivorans. Appl Microl Biot 98(5):2223–2229

    Article  CAS  Google Scholar 

  • Yang XX, Wartmann T, Stoltenburg R, Kunze G (2000) Halotolerance of the yeast Arxula adeninivorans LS3. Antonie Van Leeuwenhoek 77:303–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Science and Innovation, New Zealand Ministry of Business, Innovation and Employment (contract LVLX0802DET) and the University of Canterbury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Baronian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study did not involve human or animal subjects and therefore did not require ethical approval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J., Trautwein-Schult, A., Kunze, G. et al. Environmental and metabolic parameters affecting the uric acid production of Arxula adeninivorans . Appl Microbiol Biotechnol 101, 4725–4736 (2017). https://doi.org/10.1007/s00253-017-8199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8199-3

Keywords

Navigation