Skip to main content

Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens

Abstract

Unravelling the mechanisms of how antibiotics influence growth performance through changes in gut microbiota can lead to the identification of highly productive microbiota in animal production. Here we investigated the effect of zinc bacitracin and avilamycin on growth performance and caecal microbiota in chickens and analysed associations between individual bacteria and growth performance. Two trials were undertaken; each used 96 individually caged 15-day-old Cobb broilers. Trial 1 had a control group (n = 48) and a zinc bacitracin (50 ppm) treatment group (n = 48). Trial 2 had a control group (n = 48) and an avilamycin (15 ppm) treatment group (n = 48). Chicken growth performance was evaluated over a 10-day period, and caecal microbiota was characterised by sequencing of bacterial 16S rRNA gene amplicons. Avilamycin produced no effect on growth performance and exhibited little significant disturbance of the microbiota structure. However, zinc bacitracin reduced the feed conversion ratio (FCR) in treated birds, changed the composition and increased the diversity of their caecal microbiota by reducing dominant species. Avilamycin only produced minor reductions in the abundance of two microbial taxa, whereas zinc bacitracin produced relatively large shifts in a number of taxa, primarily Lactobacillus species. Also, a number of phylotypes closely related to lactobacilli species were positively or negatively correlated with FCR values, suggesting contrasting effects of Lactobacillus spp. on chicken growth performance. By harnessing such bacteria, it may be possible to develop high-productivity strategies in poultry that rely on the use of probiotics and less on in-feed antibiotics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Al-Sheikhly F, Al-Saieg A (1980) Role of coccidia in the occurrence of necrotic enteritis of chickens. Avian Dis 24:324–333

    CAS  Article  PubMed  Google Scholar 

  • Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Ao Z, Choct M (2013) Oligosaccharides affect performance and gut development of broiler chickens. Asian Austral J Anim 26:116–121

    CAS  Article  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microb 71:7724–7736

    CAS  Article  Google Scholar 

  • Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microb 72:1729–1738

    CAS  Article  Google Scholar 

  • Binnendijk K, Rijkers G (2013) What is a health benefit? An evaluation of EFSA opinions on health benefits with reference to probiotics. Benef Microbes 4:223–230

    CAS  Article  PubMed  Google Scholar 

  • Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137:751S–755S

    CAS  PubMed  Google Scholar 

  • Borriello SP, Carman R (1983) Association of iota-like toxin and Clostridium spiroforme with both spontaneous and antibiotic-associated diarrhea and colitis in rabbits. J Clin Microbiol 17:414–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate error-correction of amplicon pyrosequences using acacia. Nat Methods 9:425–426

    CAS  Article  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Choct M (2009) Managing gut health through nutrition. Brit Poult Sci 50:9–15

    CAS  Article  Google Scholar 

  • Chowdhury R, Islam K, Khan M, Karim M, Haque M, Khatun M, Pesti G (2009) Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poult Sci 88:1616–1622

    CAS  Article  PubMed  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Micr 57:2259–2261

    CAS  Article  Google Scholar 

  • Codony F, Adrados B, Pérez LM, Fittipaldi M, Morató J (2009) Detection of Catabacter hongkongensis in polluted European water samples. J Zhejiang Univ Sci B 10:867–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Collier C, Smiricky-Tjardes M, Albin D, Wubben J, Gabert V, Deplancke B, Bane D, Anderson D, Gaskins H (2003) Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J Anim Sci 81:3035–3045

    CAS  Article  PubMed  Google Scholar 

  • Collier C, Hofacre C, Payne A, Anderson D, Kaiser P, Mackie R, Gaskins H (2008) Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Veterinary Immunol Immunop 122:104–115

    CAS  Article  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72:5069–5072

    CAS  Article  Google Scholar 

  • Dibner J, Richards J (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    CAS  Article  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  Article  PubMed  Google Scholar 

  • Engberg RM, Hedemann MS, Leser T, Jensen BB (2000) Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult Sci 79:1311–1319

    CAS  Article  PubMed  Google Scholar 

  • Fåk F, Bäckhed F (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS One 7:e46837

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskins H, Collier C, Anderson D (2002) Antibiotics as growth promotants: mode of action. Anim Biotechnol 13:29–42

    CAS  Article  PubMed  Google Scholar 

  • Geier M, Torok V, Allison G, Ophel-Keller K, Hughes R (2009) Indigestible carbohydrates alter the intestinal microbiota but do not influence the performance of broiler chickens. J Appl Microbiol 106:1540–1548

    CAS  Article  PubMed  Google Scholar 

  • Gong J, Si W, Forster RJ, Huang R, Yu H, Yin Y, Yang C, Han Y (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol 59:147–157

    CAS  Article  PubMed  Google Scholar 

  • Gong J, Yu H, Liu T, Gill J, Chambers J, Wheatcroft R, Sabour P (2008) Effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. J Appl Microbiol 104:1372–1382

    CAS  Article  PubMed  Google Scholar 

  • Gunal M, Yayli G, Kaya O, Karahan N, Sulak O (2006) The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. Int J Poult Sci 5:149–155

    Article  Google Scholar 

  • Hughes R (2003) Sex and the single chicken. In: Proceedings of the Australian Poultry Science Symposium. University of Sydney, Sydney, pp 172–176

  • Janardhana V, Broadway MM, Bruce MP, Lowenthal JW, Geier MS, Hughes RJ, Bean AG (2009) Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J Nutr 139:1404–1409

    CAS  Article  PubMed  Google Scholar 

  • Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM (2013) Health benefits of probiotics: a review. ISRN Nutr. doi:10.5402/2013/481651

    PubMed  PubMed Central  Google Scholar 

  • Kim G-B, Seo Y, Kim C, Paik I (2011) Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci 90:75–82

    CAS  Article  PubMed  Google Scholar 

  • Kim J, Ingale S, Kim Y, Kim K, Sen S, Ryu M, Lohakare J, Kwon I, Chae B (2012) Effect of supplementation of multi-microbe probiotic product on growth performance, apparent digestibility, cecal microbiota and small intestinal morphology of broilers. J Anim Physiol An N 96:618–626

    CAS  Article  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, 1st edn. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    CAS  Article  PubMed  Google Scholar 

  • Lin J, Hunkapiller AA, Layton AC, Chang Y-J, Robbins KR (2013) Response of intestinal microbiota to antibiotic growth promoters in chickens. Foodborne Pathog Dis 10:331–337

    CAS  Article  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb 71:8228–8235

    CAS  Article  Google Scholar 

  • Lu J, Hofacre C, Smith F, Lee MD (2008) Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal 5:669–676

    Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Miles R, Butcher G, Henry P, Littell R (2006) Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult Sci 85:476–485

    CAS  Article  PubMed  Google Scholar 

  • Moore RJ, Stanley D (2016) Experimental design considerations in microbiota/inflammation studies. Clin Transl Immunology 5:e92

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelli L (2013) Probiotics: definition and taxonomy 10 years after the FAO/WHO guidelines, p 1–8. In Guarino A, Quigley EMM, Walker WA (ed), Probiotic bacteria and their effect on human health and well-being, 1st ed, vol 107. Karger Publishers, Basel

  • Neumann AP, Suen G (2015) Differences in major bacterial populations in the intestines of mature broilers after feeding virginiamycin or bacitracin methylene disalicylate. J Appl Microbiol 119:1515–1526

    CAS  Article  PubMed  Google Scholar 

  • Pedroso A, Menten J, Lambais M, Racanicci A, Longo F, Sorbara J (2006) Intestinal bacterial community and growth performance of chickens fed diets containing antibiotics. Poult Sci 85:747–752

    CAS  Article  PubMed  Google Scholar 

  • Pfaller MA (2006) Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Diagn Micr Infec Dis 56:115–121

    CAS  Article  Google Scholar 

  • Phillips I (1999) The use of bacitracin as a growth promoter in animals produces no risk to human health. J Antimicrob Chemoth 44:725–728

    CAS  Article  Google Scholar 

  • Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemoth 53:28–52

    CAS  Article  Google Scholar 

  • Quinlan AR, Stewart DA, Strömberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 5:179–181

    CAS  Article  PubMed  Google Scholar 

  • Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    CAS  Article  PubMed  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    CAS  Article  PubMed  Google Scholar 

  • Snell-Castro R, Godon J-J, Delgenès J-P, Dabert P (2005) Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. FEMS Microbiol Ecol 52:229–242

    CAS  Article  PubMed  Google Scholar 

  • Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, Moore RJ (2013a) Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol 164:85–92

    Article  PubMed  Google Scholar 

  • Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ (2013b) Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One 8:e84290

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley D, Hughes RJ, Moore RJ (2014) Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbio Biot 98:4301–4310

    CAS  Article  Google Scholar 

  • Stanley D, Hughes RJ, Geier MS, Moore RJ (2016) Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: challenges presented for the identification of performance enhancing probiotic bacteria. Front Microbiol 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR (2014) Clostridium and Bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins 6:2626–2656

  • Torok VA, Ophel-Keller K, Loo M, Hughes RJ (2008) Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microb 74:783–791

    CAS  Article  Google Scholar 

  • Torok VA, Allison GE, Percy NJ, Ophel-Keller K, Hughes RJ (2011a) Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl Environ Microb 77:3380–3390

    CAS  Article  Google Scholar 

  • Torok VA, Hughes RJ, Mikkelsen LL, Perez-Maldonado R, Balding K, MacAlpine R, Percy NJ, Ophel-Keller K (2011b) Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl Environ Microb 77:5868–5878

    CAS  Article  Google Scholar 

  • Witte W (2000) Selective pressure by antibiotic use in livestock. Int J Antimicrob Ag 16:19–24

    Article  Google Scholar 

  • Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36:808–813

    CAS  PubMed  Google Scholar 

  • Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, Krause L (2016) Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics. doi:10.1093/bioinformatics/btw725

  • Zhou H, Gong J, Brisbin J, Yu H, Sanei B, Sabour P, Sharif S (2007) Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics, using the polymerase chain reaction-denaturing gradient gel electrophoresis technique. Poult Sci 86:2541–2549

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The data was analysed using the Isaac Newton High Performance Computing System at Central Queensland University. We wish to acknowledge the support from Jason Bell in all aspects of High Performance Computing. We also thank Derek Schultz, Evelyn Daniels and Kylee Swanson (SARDI) for their assistance with animal trials and Honglei Chen (CSIRO) for operating the Roche 454 sequencer. R.J.H., M.S.G., D.S. and R.J.M. conceived the study. R.J.H. and M.S.G. carried out the animal trials. E.C., D.S. and R.J.M. did the microbiota analysis. E.C. drafted the manuscript, and all authors edited and finalised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Crisol-Martínez.

Ethics declarations

Funding

This research was funded by the Poultry Cooperative Research Centre (CRC 2.1.5) and established and supported under the Australian Government’s Cooperative Research Centres Programme. D.S. is an ARC DECRA fellow.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The Animal Ethics Committees of the University of Adelaide (approval no. S-2011-218) and the Department of Primary Industries and Resources, South Australia (approval no. 25/11) approved this study.

Additional information

Eduardo Crisol-Martínez and Dragana Stanley contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crisol-Martínez, E., Stanley, D., Geier, M.S. et al. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Appl Microbiol Biotechnol 101, 4547–4559 (2017). https://doi.org/10.1007/s00253-017-8193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8193-9

Keywords

  • Antibiotics
  • Microbiota
  • Caecum
  • Gastrointestinal tract
  • Productivity