Skip to main content
Log in

Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I–III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlert J, Distler J, Mansouri K, Piepersberg W (1997) Identification of stsC, the gene encoding the L-glutamine:scyllo-inosose aminotransferase from streptomycin-producing Streptomycetes. Arch Microbiol 168:102–113

    Article  CAS  PubMed  Google Scholar 

  • Akagawa H, Kawaguchi K, Ichihara M (1984) Plasmids of Streptomyces kasugaensis MB273: their pock formation, their dispensable endonuclease cleavage sites for pock formation, and transformation of S. kasugaensis MB273 by them. J Antibiotics 37:1016–1025

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Di Gennaro P, D’Ursi P, Orro A, Mezzelani A, Landini M, Fedi S, Frascari D, Presentato A, Zannoni D, Milanesi L (2013) Genome sequence of Rhodococcus sp. strain BCP1, a biodegrader of alkanes and chlorinated compounds. Genome Announc 1:e00657–e00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiba H, Agematsu H, Kaneto R, Terasawa T, Sakai K, Dobashi K, Yoshioka T (1999) Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcus sp. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot 52:695–699

    Article  CAS  PubMed  Google Scholar 

  • Chou WKW, Fanizza I, Uchiyama T, Komatsu M, Ikeda H, Cane DE (2010) Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J Am Chem Soc 132:8850–8851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distler J, Ebert A, Mansouri K, Pissowotzki K, Stockmann M, Piepersberg W (1987) Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res 15:8041–8056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa Y, Sawa T, Homma I, Takeuchi T, Umezawa H (1968a) Studies on biosynthesis of kasugamycin. IV biosynthesis of the kasugamine moiety from [1-14C]-glucosamine and [1,2 or 6-14C]-glucose. J Antibiot 21:358–360

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa Y, Sawa T, Takeuchi T, Umezawa H (1968b) Studies on biosynthesis of kasugamycin. I Biosynthesis of kasugamycin and the kasugamine moiety J Antibiot 21:50–54

    CAS  PubMed  Google Scholar 

  • Fukagawa Y, Sawa T, Homma I, Takeuchi T, Umezawa H (1968c) Studies on biosynthesis of kasugamycin. V Biosynthesis of the amidine group J Antibiot 21:410–412

    CAS  PubMed  Google Scholar 

  • Fukagawa Y, Sawa T, Takeuchi T, Umezawa H (1968d) Studies on biosynthesis of kasugamycin. II biosynthesis of the two-carbon-side chain of kasugamycin. J Antibiot 21:182–184

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa Y, Sawa T, Takeuchi T, Umezawa H (1968e) Studies on biosynthesis of kasugamycin. III Biosynthesis of the D-inositol moiety J Antibiot 21:185–188

    CAS  Google Scholar 

  • Hamada M, Kinoshita N, Hattori S, Yoshida A, Okami Y, Higashide K, Sakata N, Hori M (1995) Streptomyces kasugaensis sp. nov.: a new species of genus Streptomyces. Actinomycetol 9:27–36

    Article  Google Scholar 

  • Hong Y, Hondalus MK (2008) Site-specific integration of Streptomyces ΦC31 integrase-based vectors in the chromosome of Rhodococcus equi. FEMS Microbiol Lett 287:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Ikeno S, Higashide K, Kinoshita N, Hamada M, Hori M (1996) Correlation between the presence of kac, kasugamycin acetyltransferase gene, and the productivity of kasugamycin in Streptomyces. Actinomycetol 10:73–79

    Article  CAS  Google Scholar 

  • Ikeno S, Tsuji T, Higashide K, Kinoshita N, Hamada M, Hori M (1998) A 7.6kb DNA region from Streptomyces kasugaensis M338-M1 includes some genes responsible for kasugamycin biosynthesis. J Antibiot 51:341–352

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Yamane Y, Ohishi Y, Kinoshita N, Hamada M, Tsuchiya KS, Hori M (2000) ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain. J Antibiot 53:373–384

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Aoki D, Sato K, Hamada M, Hori M, Tsuchiya KS (2002) kasT gene of Streptomyces kasugaensis M338-M1 encodes a DNA-binding protein which binds to intergenic region of kasUkasJ in the kasugamycin biosynthesis gene cluster. J Antibiot 55:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Aoki D, Hamada M, Hori M, Tsuchiya KS (2006) DNA sequencing and transcriptional analysis of the kasugamycin biosynthetic gene cluster from Streptomyces kasugaensis M338-M1. J Antibiot 59:18–28

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174:251–253

    Article  CAS  PubMed  Google Scholar 

  • Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128:7486–7491

    Article  CAS  PubMed  Google Scholar 

  • Kasuga K, Nitta A, Kobayashi M, Habe H, Nojiri H, Yamane H, Omori T, Kojima I (2013) Cloning of dfdA genes from Terrabacter sp. strain DBF63 encoding dibenzofuran 4,4a-dioxygenase and heterologous expression in Streptomyces lividans. Appl Microbiol Biotechnol 97:4485–4498

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kitagawa W, Tamura T (2008) A quinoline antibiotic from Rhodococcus erythropolis JCM 6824. J Antibiot 61:680–682

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Komeda H, Yanaka N, Nagasawa T, Yamada H (1992) Nitrilase from Rhodococcus rhodochrous J1: sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267:20746–20751

    CAS  PubMed  Google Scholar 

  • Kojima I, Kasuga K, Kobayashi M, Fukasawa A, Mizuno S, Arisawa A, Akagawa H (2003a) The rpoZ gene, encoding the RNA polymerase omega subunit, is required for antibiotic production and morphological differentiation in Streptomyces kasugaensis. J Bacteriol Erratum in J Bacteriol 184:6417–6423

    Google Scholar 

  • Kojima I, Kasuga K, Kobayashi M, Matsuo M, Akagawa A, Mizuno S (2003b) Cloning system for Streptomyces kasugaensis using the hybrid melanin-synthesizing gene melE as a chromogenic marker. Actinomycetol 17:29–32

    Article  CAS  Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurumbang NP, Liou K, Sohng JK (2011) Biosynthesis of ribostamycin derivatives by reconstitution and heterologous expression of required gene sets. Appl Biochem Biotechnol 163:373–382

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane J, Jha AK, Singh B, Pandey RP, Sohng JK (2014) Heterologous production of spectinomycin in Streptomyces venezuelae by exploiting the dTDP-D-desosamine pathway. J Biotechnol 174:57–63

    Article  CAS  PubMed  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitani Y, Meng XY, Kamagata Y, Tamura T (2005) Characterization of LtsA from Rhodococcus erythropolis, an enzyme with glutamine amidotransferase activity. J Bacteriol 187:2582–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima N, Tamura T (2004a) A novel system for expressing recombinant proteins over a wide temperature from 4 to 35°C. Biotechnol Bioeng 86:136–148

    Article  CAS  PubMed  Google Scholar 

  • Nakashima N, Tamura T (2004b) Isolation and characterization of a rolling circle type plasmid from Rhodococcus erythropolis: application in multiple recombinant protein expression. Appl Environ Microbiol 70:5557–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okanishi M, Katagiri K, Furumai T, Takeda K, Kawaguchi K, Saitoh M, Nabeshima S (1983) Basic techniques for DNA cloning and conditions required for streptomycetes as a host. J Antibiotics 36:99–108

    Article  CAS  Google Scholar 

  • Onaka H, Taniguchi S, Ikeda H, Igarashi Y, Furumai T (2003) pTOYAMAcos, pTYM18, and pTYM19, actinomycete-Escherichia coli integrating vectors for heterologous gene expression. J Antibiot 56:950–956

    Article  CAS  PubMed  Google Scholar 

  • Palaniappan N, Ayers S, Gupta S, Habib ES, Reynolds KA (2006) Production of hygromycin A analogs in Streptomyces hygroscopicus NRRL 2388 through identification and manipulation of the biosynthetic gene cluster. Chem Biol 13:753–764

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Second edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzu M, Nierhaus KH, Yokoyama S, Fucini P (2006) The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13:871–878

    Article  CAS  PubMed  Google Scholar 

  • Subba B, Kurumbang NP, Jung YS, Yoon YJ, Lee HC, Liou K, Sohng JK (2007) Production of aminoglycosides in non-aminoglycoside producing Streptomyces lividans TK24. Bioorg Med Chem Lett 17:1892–1896

    Article  CAS  PubMed  Google Scholar 

  • Thapa LP, Oh TJ, Lee HC, Liou K, Park JW, Yoon YJ, Sohng JK (2007) Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003. Appl Microbiol Biotechnol 76:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Thapa LP, Oh TJ, Liou K, Sohng JK (2008) Biosynthesis of spectinomycin: heterologous production of spectinomycin and spectinamine in an aminoglycoside-deficient host, Streptomyces venezuelae YJ003. J Appl Microbiol 105:300–308

    Article  CAS  PubMed  Google Scholar 

  • Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N (1998) Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett 162:47–52

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Kang Q, Bai L, Cheng L, Deng Z (2016) Identification and engineering of regulation-related genes toward improved kasugamycin production. Appl Microbiol Biotechnol 100:1811–1821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Onaka of The University of Tokyo for kindly providing pTOYAMAcos and pTYM19 vectors, Dr. Ikeno of Showa Pharmaceutical University for providing pSK1171-kasT plasmid, and the Biotechnology Center, Akita Prefectural University, for assistance with DNA sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kano Kasuga.

Ethics declarations

Funding

This work was supported in part by JSPS KAKENHI (Grant Number JP20580081).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article describes no study with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasuga, K., Sasaki, A., Matsuo, T. et al. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster. Appl Microbiol Biotechnol 101, 4259–4268 (2017). https://doi.org/10.1007/s00253-017-8189-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8189-5

Keywords

Navigation