Abdelmalek N, Sellami S, Ben Kridis A, Tounsi S, Rouis S (2015) Molecular characterisation of Bacillus thuringiensis strain MEB4 highly toxic to the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pest Manag Sci. doi:10.1002/ps.4066
PubMed
Google Scholar
Aceves-Diez AE, Estrada-Castañeda KJ, Castañeda-Sandoval LM (2015) Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils. J Environ Manag 157:213–219. doi:10.1016/j.jenvman.2015.04.026
CAS
Article
Google Scholar
Ahern M, Verschueren S, Van Sinderen D (2003) Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Let 220:127–131. doi:10.1016/S0378-1097(03)00086-7
CAS
Article
Google Scholar
Ahmed N, Wang M, Shu S (2016) Effect of commercial Bacillus thuringiensis toxins on Tyrophagus putrescentiae (Schrank) fed on wolfberry (Lycium barbarum L.). Int J Acarol 42:1–6. doi:10.1080/01647954.2015.1109707
Article
Google Scholar
Akram W, Mahboob A, Javed AA (2013) Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur J Microbiol Immunol 3:275–280. doi:10.1556/EuJMI.3.2013.4.7
Article
Google Scholar
Aldeewan A, Zhang Y, Su L (2014) Bacillus thuringiensis parasporins functions on cancer cells. Int J Pure App Biosci 2:67–74
Google Scholar
Alquisira-Ramírez EV, Paredes-Gonzalez JR, Hernández-Velázquez VM, Ramírez-Trujillo JA, Peña-Chora G (2014) In vitro susceptibility of Varroa destructor and Apis mellifera to native strains of Bacillus thuringiensis. Apidol 45:707–718. doi:10.1007/s13592-014-0288-z
Article
CAS
Google Scholar
Ammons DR, Short JD, Bailey J, Hinojosa G, Tavarez L, Salazar M, Rampersad JN (2016) Anti-cancer parasporin toxins are associated with different environments: discovery of two novel parasporin 5-like genes. Curr Microbiol 72:184–189. doi:10.1007/s00284-015-0934-3
CAS
PubMed
Article
Google Scholar
Armada E, Probanza A, Roldán A, Azcón R (2015a) Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. J Plant Physiol 192:1–12. doi:10.1016/j.jplph.2015.11.007
PubMed
Article
CAS
Google Scholar
Armada E, Azcon R, Lopez-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015b) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74. doi:10.1016/j.plaphy.2015.03.004
CAS
PubMed
Article
Google Scholar
Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483. doi:10.1016/j.jhazmat.2013.02.014
PubMed
Article
CAS
Google Scholar
Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781. doi:10.2135/cropsci2003.1774
Article
Google Scholar
Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:311–316. doi:10.1007/s00436-013-3656-0
PubMed
Article
Google Scholar
Barbosa LC, Farias DL, Silva ID, Melo FL, Ribeiro BM, Aguiar RW (2015) Draft genome sequence of Bacillus thuringiensis 147, a Brazilian strain with high insecticidal activity. Mem Inst Oswaldo Cruz 110:822–823. doi:10.1590/0074-02760150273
PubMed
PubMed Central
Article
Google Scholar
Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126
CAS
PubMed
Article
Google Scholar
Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2009) Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Veter Microbiol 138:179–183. doi:10.1007/s00203-006-0178-5
CAS
Article
Google Scholar
BCC Research Report (2015) Biopesticides: The Global Market. CHM029E
Blackburn MB, Martin PA, Kuhar D, Farrar RR Jr, Gundersen-Rindal DE (2013) Phylogenetic distribution of phenotypic traits in Bacillus thuringiensis determined by multilocus sequence analysis. PLoS One 8:e66061. doi:10.1371/journal.pone.0066061
CAS
PubMed
PubMed Central
Article
Google Scholar
Bora LC, Kataki L, Talukdar K, Nath BC, Sarkar R (2015) Molecular characterizations of microbial antagonists and development of bioformulations for management of bacterial wilt of Naga chilli (Capsicum chinens jacq.) in Assam. J Exp Biol 3:2
Google Scholar
Brar SK, Verma M, Tyagi RD, Valéro JR, Surampalli RY (2009) Concurrent degradation of dimethyl phthalate (DMP) during production of Bacillus thuringiensis based biopesticides. J Hazard Mater 171:1016–1023. doi:10.1016/j.jhazmat.2009.06.108
CAS
PubMed
Article
Google Scholar
Brasseur K, Auger P, Asselin E, Parent S, Côté JC, Sirois M (2015) Parasporin-2 from a new Bacillus thuringiensis 4r2 strain induces caspases activation and apoptosis in human cancer cells. PLoS One 10:e0135106. doi:10.1371/journal.pone.0135106
PubMed
PubMed Central
Article
CAS
Google Scholar
Brookes G, Barfoot P (2015) Environmental impacts of genetically modified (GM) crop use 1996–2013: impacts on pesticide use and carbon emissions. GM Crops Food 6:103–133. doi:10.1080/21645698.2015.1025193
PubMed
PubMed Central
Article
Google Scholar
Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C (2007) The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 189:3680–3681. doi:10.1128/JB.00241-07
CAS
PubMed
PubMed Central
Article
Google Scholar
Chehimi S, Limam F, Lanneluc I, Delalande F, van Dorsselaer A, Sable S (2012) Identification of three novel B thuringiensis strains that produce the Thuricin S bacteriocin. Bt Res 3(1). doi:10.5376/bt.2012.03.0002
Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, Zhou J, He F, Hu M, Zhang LH (2015a) Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep 5. doi:10.1038/srep08784
Chen Z, Chen H, Pan X, Lin Z, Guan X (2015b) Investigation of methylene blue biosorption and biodegradation by Bacillus thuringiensis 016. Water Air Soil Poll 226:1–8. doi:10.1007/s11270-015-2417-3
Google Scholar
Chen Z, Pan X, Chen H, Lin Z, Guan X (2015c) Investigation of lead (II) uptake by Bacillus thuringiensis 016. World J Microbiol Biotechnol 31:1729–1736. doi:10.1007/s11274-015-1923-1
CAS
PubMed
Article
Google Scholar
Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hassen A, Jaoua S (2001) Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1 7, a new strain isolated from soil. Lett Appl Microbiol 32:243–247. doi:10.1046/j.1472-765X.2001.00898.x
CAS
PubMed
Article
Google Scholar
Cherif A, Rezgui W, Raddadi N, Daffonchio D, Boudabous A (2008) Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp Entomocidus HD110. Microbiol Res 163:684–692. doi:10.1016/j.micres.2006.10.005
CAS
PubMed
Article
Google Scholar
Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A (2016) Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol:1–11. doi:10.1007/s13213-016-1194-6
Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753. doi:10.1002/ps.684
CAS
PubMed
Article
Google Scholar
Craig W, Tepfer M, Degrassi G, Ripandelli D (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164:853–880
Article
Google Scholar
Crickmore N, Zeigler DR, Feitelson J (2016) Bacillus thuringiensis Toxin Nomenclature http://wwwlifescisussexacuk/Home/Neil_Crickmore/Bt/ (Accessed on June, 2016)
Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014b) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126. doi:10.1007/s13205-013-0130-8
PubMed
Article
Google Scholar
Das P, Sinha S, Mukherjee SK (2014a) Nickel bioremediation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Biorem J 18:169–177. doi:10.1080/10889868.2014.889071
CAS
Article
Google Scholar
Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Poll Res 21:2642–2653. doi:10.1007/s11356-013-2206-8
CAS
Article
Google Scholar
Dave SR, Dave RH (2009) Isolation and characterization of Bacillus thuringiensis for acid red 119 dye decolourisation. Bioresource Technol 100:249–253. doi:10.1016/j.biortech.2008.05.019
CAS
Article
Google Scholar
de la Fuente-Salcido N, Alanís-Guzmán MG, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 190:633–640
PubMed
Article
CAS
Google Scholar
de la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE (2013) Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Canad J Microbiol 59:515–522. doi:10.1139/cjm-2013-0284
Article
CAS
Google Scholar
Devidas P, Rehberger LA (1992) The effects of exotoxin (thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil 145:115–120. doi:10.1007/BF00009547
CAS
Article
Google Scholar
Doggett NA, Stubben CJ, Chertkov O, Bruce DC, Detter JC, Johnson SL, Han CS (2013) Complete genome sequence of Bacillus thuringiensis serovar israelensis strain HD-789. Genome Announc 1:e01023–e01013. doi:10.1128/genomeA.01023-13
PubMed
PubMed Central
Article
Google Scholar
Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960. doi:10.1128/AEM.70.2.954-960.2004
CAS
PubMed
PubMed Central
Article
Google Scholar
Dong Z, Li J, Zheng J, Geng C, Peng D, Sun M (2016) Complete genome sequence of Bacillus thuringiensis CTC—a typical strain with high production of S-layer proteins. J Biotechnol 220:100–101. doi:10.1016/j.jbiotec.2015.12.027
CAS
PubMed
Article
Google Scholar
Dubois T, Faegri K, Perchat S, Lemy C, Buisson C, Nielsen-LeRoux C, Gohar M, Jacques P, Ramarao N, Kolstø AB, Lereclus D (2012) Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog 8:e1002629. doi:10.1371/journal.ppat.1002629
CAS
PubMed
PubMed Central
Article
Google Scholar
Dunstand-Guzmán E, Peña-Chora G, Hallal-Calleros C, Pérez-Martínez M, Hernández-Velazquez VM, Morales-Montor J, Flores-Pérez FI (2015) Acaricidal effect and histological damage induced by Bacillus thuringiensis protein extracts on the mite Psoroptes cuniculi. Parasit Vectors 8:1. doi:10.1186/s13071-015-0890-6
Article
CAS
Google Scholar
Ekino K, Okumura S, Ishikawa T, Kitada S, Saitoh H, Akao T, Oka T, Nomura Y, Ohba M, Shin T, Mizuki E (2014) Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis A1100 strain. Toxins 6:1882–1895. doi:10.3390/toxins6061882
PubMed
PubMed Central
Article
CAS
Google Scholar
El-Sersy NA (2007) Bioremediation of methylene blue by Bacillus thuringiensis 4 G 1: application of statistical designs and surface plots for optimization. Biotechnol 6:34–39
CAS
Article
Google Scholar
Elsharkawy MM, Nakatani M, Nishimura M, Arakawa T, Shimizu M, Hyakumachi M (2015) Control of tomato bacterial wilt and root-knot diseases by Bacillus thuringiensis CR-371 and Streptomyces avermectinius NBRC14893. Acta Agri Scandinavica, Section B—Soil Plant Sci 65:575–580. doi:10.1080/09064710.2015.1031819
CAS
Google Scholar
Erban T, Nesvorna M, Erbanova M, Hubert J (2009) Bacillus thuringiensis var tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions. Exp App Acarol 49:339–346. doi:10.1007/s10493-009-9265-z
CAS
Article
Google Scholar
Ferreira L, Rosales E, Danko AS, Sanromán MA, Pazos MM (2016) Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot 101:19–26. doi:10.1016/j.psep.2015.05.003
CAS
Article
Google Scholar
Franco-Molina MA, Mendoza-Gamboa E, Roman-Calderon ME, Zapata-Benavides P, Rivera-Morales LG, Zapata-Monsivais L, Coronado-Cerda EE, Sierra-Rivera CA, Tamez-Guerra R, Rodriguez-Padilla C (2016) In vitro antitumoral activity of soluble protein extracts of Bacillus thuringiensis. Afr J Microbiol Res 10:324–329. doi:10.5897/AJMR2015.7551
CAS
Article
Google Scholar
Gao X, Han Q, Chen Y, Qin H, Huang L, Kang Z (2014) Biological control of oilseed rape Sclerotinia stem rot by Bacillus subtilis strain Em7. Biocontrol Sci Tech 24:39–52. doi:10.1080/09583157.2013.844223
Article
Google Scholar
Gao Q, Zheng J, Zhu L, Ruan L, Peng D, Sun M (2015) Complete genome sequence of Bacillus thuringiensis tenebrionis 4AA1, a typical strain with toxicity to Coleopteran insects. J Biotechnol 204:15–16. doi:10.1016/j.jbiotec.2015.03.009
CAS
PubMed
Article
Google Scholar
Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50:103–111. doi:10.1007/s12275-012-1343-y
CAS
PubMed
Article
Google Scholar
Guan P, Ai P, Dai X, Zhang J, Xu L, Zhu J, Li Q, Deng Q, Li S, Wang S, Liu H (2012) Complete genome sequence of Bacillus thuringiensis serovar Sichuansis strain MC28. J Bacteriol 194:6975–6975. doi:10.1128/JB.01861-12
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-518. Appl Environ Microbiol 74:6997–7001. doi:10.1128/AEM.01346-08
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp L14. Bioresource Technol 101:8599–8605. doi:10.1016/j.biortech.2010.06.085
CAS
Article
Google Scholar
Gutiérrez-Chávez AJ, Martínez-Ortega EA, Valencia-Posadas M, León-Galván MF, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE (2016) Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats. Folia Microbiol 61:11–19. doi:10.1007/s12223-015-0404-0
Article
CAS
Google Scholar
Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390. doi:10.1128/JB.188.9.3382-3390.2006
PubMed
PubMed Central
Article
Google Scholar
Hassanain MA, Garhy ME, Abdel-Ghaffar FA, El-Sharaby A, Megeed KN (1997) Biological control studies of soft and hard ticks in Egypt I the effect of Bacillus thuringiensis varieties on soft and hard ticks (Ixodidade). Parasitol Res 83:209–213
CAS
PubMed
Article
Google Scholar
Hassen A, Saidi N, Cherif M, Boudabous A (1998) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresource Technol 65:73–82. doi:10.1016/S0960-8524(98)00011-X
CAS
Article
Google Scholar
Hayakawa T, Kanagawa R, Kotani Y, Kimura M, Yamagiwa M, Yamane Y, Takebe S, Sakai H (2007) Parasporin-2Ab, a newly isolated cytotoxic crystal protein from Bacillus thuringiensis. Curr Microbiol 55:278–283. doi:10.1007/s00284-006-0351-8
CAS
PubMed
Article
Google Scholar
He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S, Yu Z (2010) Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 192:4074–4075. doi:10.1128/JB.00562-10
CAS
PubMed
PubMed Central
Article
Google Scholar
He J, Wang J, Yin W, Shao X, Zheng H, Li M, Zhao Y, Sun M, Wang S, Yu Z (2011) Complete genome sequence of Bacillus thuringiensis subsp chinensis strain CT-43. J Bacteriol 193:3407–3408. doi:10.1128/JB.05085-11
CAS
PubMed
PubMed Central
Article
Google Scholar
Hong CE, Jo SH, Moon JY, Lee JS, Kwon SY, Park JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnol Rep 9:451–458. doi:10.1007/s11816-015-0372-5
Article
Google Scholar
Hu Y, Aroian RV (2012) Promise of Bacillus thuringiensis crystal proteins as Anthelmintics. Parasitic Helminths: Targets, Screens, Drugs and Vaccines:267–281. doi:10.1002/9783527652969.ch16
Huang J, Ye J, Ma J (2014a) Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by Bacillus thuringiensis and tea saponin. Chem Eng J 249:167–173 dx.doi.org/10.1016/j.cej.2014.03.110
CAS
Article
Google Scholar
Huang TP, Ying XI, Jie-Ru PA, Zhi CH, Li-Fen LI, Lei XU, Zhang LL, Xiong GU (2014b) Aerobic Cr (VI) reduction by an indigenous soil isolate Bacillus thuringiensis BRC-ZYR2. Pedosphere 24:652–661. doi:10.1016/S1002-0160(14)60051-5
Article
Google Scholar
Iatsenko I, Boichenko I, Sommer RJ (2014a) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl Environ Microbiol 80:3266–3275. doi:10.1128/AEM.00464-14
PubMed
PubMed Central
Article
CAS
Google Scholar
Iatsenko I, Corton C, Pickard DJ (2014b) Draft genome sequence of highly nematicidal Bacillus thuringiensis DB27. Genome Announc 2:e00101–e00114. doi:10.1128/genomeA.00101-14
PubMed
PubMed Central
Article
Google Scholar
ISAAA’s GM Approval Database, 2016 http://wwwisaaaorg/gmapprovaldatabase/
Jahan N, Idrees M, Zahid MT, Ali NM, Hussain M (2016) Molecular identification and characterization of heavy metal resistant bacteria and their role in bioremediation of chromium. British Microbiol Res J 13(6)
Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48:1152 http://imsear.hellis.org/handle/123456789/145076
CAS
PubMed
Google Scholar
Jain D, Saharan V, Pareek S (2016) Current status of Bacillus thuringiensis: insecticidal crystal proteins and transgenic crops in advances in plant breeding strategies: agronomic, abiotic and biotic stress traits (657–698). Springer International Publishing, New York. doi:10.1007/978-3-319-22518-0_18
Google Scholar
James C (2015) Global Status of Commercialized Biotech/GM Crops: 2015 ISAAA Brief No 51 ISAAA: Ithaca, NY. http://www.isaaa.org/resources/publications/annualreport/2015/default.asp
Jeong H, Jo SH, Hong CE, Park JM (2016) Genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, a potential biocontrol agent against phytopathogens. Genome Announc 4:e00279–e00216. doi:10.1128/genomeA.00279-16
PubMed
PubMed Central
Google Scholar
Jisha VN, Smitha RB, Benjamin S (2013) An overview on the crystal toxins from Bacillus thuringiensis. Adv Microbiol 3(05):462. doi:10.4236/aim.2013.35062
CAS
Article
Google Scholar
Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT, Broomall SM, Bishop-Lilly KA, Bruce DC, Gibbons HS, Coyne SR (2015) Complete genome sequences for 35 biothreat assay-relevant Bacillus species. Genome Announc 3:e00151–e00115. doi:10.1128/genomeA.00151-15
PubMed
PubMed Central
Google Scholar
Juibari MM, Yeganeh LP, Abbasalizadeh S, Azarbaijani R, Mousavi SH, Tabatabaei M, Jouzani GS, Salekdeh GH (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Let 65:1014–1017. doi:10.1007/s12668-015-0185-6
CAS
Article
Google Scholar
Juibari MM, Yeganeh LP, Abbasalizadeh S, Azarbaijani R, Mousavi SH, Tabatabaei M, Jouzani GS, Salekdeh GH (2015) Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized gold nanoparticles. BioNanoSci 5:233–241. doi:10.1007/s12668-015-0185-6
Article
Google Scholar
Kamoun F, Fguira IB, Hassen NB, Mejdoub H, Lereclus D, Jaoua S (2011) Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl Biochem Biotechnol 165:300–314. doi:10.1007/s12010-011-9252-9
CAS
PubMed
Article
Google Scholar
Kanda K, Nakashima K, Nagano Y (2015) Complete genome sequence of Bacillus thuringiensis serovar tolworthi strain Pasteur Institute Standard. Genome Announc 3:e00710–e00715. doi:10.1128/genomeA.00710-15
PubMed
PubMed Central
Article
Google Scholar
Katayama H, Yokota H, Akao T, Nakamura O, Ohba M, Mekada E, Mizuki E (2005) Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensis. J Biochem 137:17–25. doi:10.1093/jb/mvi003
CAS
PubMed
Article
Google Scholar
Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA (2009) Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int J Environ Sci Technol 6:435–442. doi:10.1007/BF03326082
CAS
Article
Google Scholar
Khan MQ, Abbasi MW, Zaki MJ, Khan SA (2010) Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pakistan J Botany 42:2903–2910
Google Scholar
Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949. doi:10.1111/j.1365-2672.2004.02356.x
CAS
PubMed
Article
Google Scholar
Kotze AC, O’grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35:1013–1022. doi:10.1016/j.ijpara.2005.03.010
CAS
PubMed
Article
Google Scholar
Krishnan K, Ker JE, Mohammed SM, Nadarajah VD (2010) Identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells. J Biomed Sci 17:86. doi:10.1186/1423-0127-17-86
PubMed
PubMed Central
Article
CAS
Google Scholar
Kumar P, Chandra R (2004) Detoxification of distillery effluent through Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential of Spirodela polyrrhiza (L) Schliden Bull Environ Contam. Toxicol 73:903–910. doi:10.1007/s00128-004-0512-z
CAS
Google Scholar
Kumar P, Chandra R (2006) Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresource Technol 97:2096–2102. doi:10.1016/j.biortech.2005.10.012
CAS
Article
Google Scholar
Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Oriental J Chem 31:357–361
Lacey LA, Frutos R, Kaya HK, Vail P (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. doi:10.1006/bcon.2001.0938
CAS
PubMed
Article
Google Scholar
Lecadet MM (2013) Bacillus thuringiensis toxins—the proteinaceous crystal. Bacterial Protein Toxins 3:437–471
Google Scholar
Lecadet MM, Frachon E, Dumanoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672. doi:10.1046/j.1365-2672.1999.00710.x
CAS
PubMed
Article
Google Scholar
Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SR, Ly A, Souleimanov A, Zhou X, Smith DL (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755. doi:10.1007/s00425-008-0870-6
Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464
CAS
PubMed
Article
Google Scholar
Li XQ, Tan A, Voegtline M, Bekele S, Chen CS, Aroian RV (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control 47:97–102
Article
CAS
Google Scholar
Li Q, Zou T, Ai P, Pan L, Fu C, Li P, Zheng A (2015a) Complete genome sequence of Bacillus thuringiensis HS18-1. J Biotechnol 214:61–62
CAS
PubMed
Article
Google Scholar
Li Q, Xu LZ, Zou T, Ai P, Huang GH, Li P, Zheng AP (2015b) Complete genome sequence of Bacillus thuringiensis strain HD521 Standards. Genomic Sci 10:1. doi:10.1186/s40793-015-0058-1
Article
CAS
Google Scholar
Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F (2013) Complete genome sequence of Bacillus thuringiensis subsp kurstaki strain HD73. Genome Announc 1:e00080–e00013. doi:10.1128/genomeA.00080-13
PubMed
Google Scholar
Luo H, Xiong J, Zhou Q, Xia L, Yu Z (2013a) The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Appl Microbiol Biotechnol 97:10135–10142. doi:10.1007/s00253-013-5249-3
CAS
PubMed
Article
Google Scholar
Luo X, Chen L, Huang Q, Zheng J, Zhou W, Peng D, Ruan L, Sun M (2013b) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl Environ Microbiol 79:460–468. doi:10.1128/AEM.02551-12
CAS
PubMed
PubMed Central
Article
Google Scholar
Maiti A, Das S, Bhattacharyya N (2012) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons by Bacillus thuringiensis strain NA2. J Sci 1:72–75 www.worldsciencepublisher.org
Google Scholar
Mandal K, Singh B, Jariyal M, Gupta VK (2013) Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicol Environ Saf 93:87–92. doi:10.1016/j.ecoenv.2013.04.001
CAS
PubMed
Article
Google Scholar
Marimuthu S, Rahuman AA, Kirthi AV, Santhoshkumar T, Jayaseelan C, Rajakumar G (2013) Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitol Res 112:4105–4112. doi:10.1007/s00436-013-3601-2
PubMed
Article
Google Scholar
Martínez-Absalón S, Rojas-Solís D, Hernández-León R, Prieto-Barajas C, Orozco-Mosqueda MD, Peña-Cabriales JJ, Sakuda S, Valencia-Cantero E, Santoyo G (2014) Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci Tech 24:1349–1362. doi:10.1080/09583157.2014.940846
Article
Google Scholar
Melo AL, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Rev Biotechnol 36:317–326. doi:10.3109/07388551.2014.960793
CAS
Article
Google Scholar
Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009a) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L) and lentil (Lens culinaris L). World J Microbiol Biotechnol 25:753–761. doi:10.1007/s11274-009-9963-z
Article
Google Scholar
Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar Gupta H (2009b) Enhanced soybean (Glycine max L) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Section B–Soil and Plant Sci 59:189–196. doi:10.1080/09064710802040558
CAS
Google Scholar
Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park YS (1999) Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J Appl Microbiol 86:477–486. doi:10.1046/j.1365-2672.1999.00692.x
CAS
PubMed
Article
Google Scholar
Mohammed SH, El Saedy MA, Enan MR, Ibrahim NE, Ghareeb A, Moustafa SA (2008) Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J Cell Mol Biol 7:57–66 http://jcmb.halic.edu.tr
Google Scholar
Murawska E, Fiedoruk K, Bideshi DK, Swiecicka I (2013) Complete genome sequence of Bacillus thuringiensis subsp thuringiensis strain IS5056, an isolate highly toxic to Trichoplusia ni. Genome Announc 1:e00108–e00113. doi:10.1128/genomeA.00108-13
PubMed Central
Article
Google Scholar
Nayak PS, Arakha M, Kumar A, Asthana S, Mallick BC, Jha S (2016) An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Adv 6:8232–8242. doi:10.1039/C5RA21281B
CAS
Article
Google Scholar
Nazarian A, Jahangiri R, Salehi Jouzani G, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol 102:101–109. doi:10.1016/j.jip.2009.07.009
CAS
PubMed
Article
Google Scholar
Neethu KB, Priji P, Unni KN, Sajith S, Sreedevi S, Ramani N, Anitha K, Rosana B, Girish MB, Benjamin S (2016) New Bacillus thuringiensis strain isolated from the gut of Malabari goat is effective against Tetranychus macfarlanei. J Appl Entomol 140:187–198. doi:10.1111/jen.12235
Article
Google Scholar
Ohba M, Mizuki E, Uemori A (2009) Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res 29:427–433 http://ar.iiarjournals.org/content/29/1/427.short
CAS
PubMed
Google Scholar
Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10:5221–5238. doi:10.3390/ijerph10105221
PubMed
PubMed Central
Article
CAS
Google Scholar
Okumura S, Saitoh H, Ishikawa T, Wasano N, Yamashita S, Kusumoto KI, Akao T, Mizuki E, Ohba M, Inouye K (2005) Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 and its selective cytotoxic activity against various mammalian cell lines. J Agric Food Chem 53:6313–6318. doi:10.1021/jf0506129
CAS
PubMed
Article
Google Scholar
Okumura S, Saitoh H, Ishikawa T, Inouye K, Mizuki E (2011) Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. BBA Biomemb 1808:1476–1482. doi:10.1016/j.bbamem.2010.11.003
CAS
Article
Google Scholar
Olukanni OD, Adenopo A, Awotula AO, Osuntoki AA (2013) Biodegradation of malachite green by extracellular laccase producing Bacillus thuringiensis RUN1. J Basic Appl Sci 9:543
Google Scholar
Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96. doi:10.1016/j.jplph.2014.08.019
CAS
PubMed
Article
Google Scholar
Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129. doi:10.1016/j.sjbs.2012.11.006
CAS
PubMed
Article
Google Scholar
Paik HD, Bae SS, Park SH, Pan JG (1997) Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. J Ind Microbiol Biotechnol 19:294–298. doi:10.1038/sj.jim.2900462
CAS
PubMed
Article
Google Scholar
Pan X, Chen Z, Chen F, Cheng Y, Lin Z, Guan X (2015) The mechanism of uranium transformation from U (VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains. J Hazard Mater 297:313–319 dx.doi.org/10.1016/j.jhazmat.2015.05.019
CAS
PubMed
Article
Google Scholar
Pane C, Villecco D, Campanile F, Zaccardelli M (2012) Novel strains of bacillus, isolated fromcompost and compost amended soils, as biological control agents against soil-borne phytopathogenic fungi. Biocontrol Sci Tech 22:1373–1388. doi:10.1080/09583157.2012.729143
Article
Google Scholar
Park SJ, Park SY, Ryu CM, Park SH, Lee JK (2008) The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J Microbiol Biotechnol 18:1518–1521
CAS
PubMed
Google Scholar
Peng D, Lin J, Huang Q, Zheng W, Liu G, Zheng J, Zhu L, Sun M (2016) A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects. Environ Microbiol. doi:10.1111/1462-2920.13069
Google Scholar
Periyasamy A, Kkani P, Chandrasekaran B, Ponnusamy S, Viswanathan S, Selvanayagam P, Rajaiah S (2016) Screening and characterization of a non-insecticidal Bacillus thuringiensis strain producing parasporal protein with selective toxicity against human colon cancer cell lines. Ann Microbiol:1–12. doi:10.1007/s13213-016-1204-8
Poopathi S, Abidha S (2008) Biodegradation of poultry waste for the production of mosquitocidal toxins. Int Biodeter Biodegr 62:479–482. doi:10.1016/j.ibiod.2008.03.005
CAS
Article
Google Scholar
Poornima K, Selvanayagam P, Shenbagarathai R (2010) Identification of native Bacillus thuringiensis strain from South India having specific cytocidal activity against cancer cells. J Appl Microbiol 109:348–354. doi:10.1111/j.1365-2672.2010.04697.x
CAS
PubMed
Google Scholar
Prudent M, Salon C, Souleimanov A, Emery RN, Smith DL (2015) Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis. Agron Sustain Dev 35:749–757. doi:10.1007/s13593-014-0256-z
CAS
Article
Google Scholar
Raybould A (2006) Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. Environ Biosaf Res 5:119–125
Article
Google Scholar
Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69:M131–M134. doi:10.1111/j.1365-2621.2004.tb10721.x
Article
Google Scholar
Rocha LO, Tralamazza SM, Reis GM, Rabinovitch L, Barbosa CB, Corrêa B (2014) Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis subsp kurstaki. PLoS One 9:e92189. doi:10.1371/journal.pone.0092189
PubMed
PubMed Central
Article
CAS
Google Scholar
Roy A, Mahata D, Paul D, Korpole S, Franco OL, Mandal SM (2013) Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Front Microbiol 4:10–3389. doi:10.3389/fmicb.2013.00332
Google Scholar
Ruan L, Crickmore N, Peng D, Sun M (2015) Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends Microbiol 23:341–346. doi:10.1016/j.tim.2015.02.011
CAS
PubMed
Article
Google Scholar
Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol:101–117 http://www.jstor.org/stable/41998046
Salehi Jouzani G (2012) Risk assessment of GM crops; challenges in regulations and science. J Biosafety 1:4. doi:10.4172/2167-0331.1000e113
Google Scholar
Salehi Jouzani G, Abad AP, Seifinejad A, Marzban R, Kariman K, Maleki B (2008a) Distribution and diversity of dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 35:83–94. doi:10.1007/s10295-007-0269-6
CAS
Article
Google Scholar
Salehi Jouzani G, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Amiri RM, Akbari S (2008b) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Canad J Microbiol 54:812–822. doi:10.1139/W08-074
CAS
Article
Google Scholar
Salehi Jouzani G, Goldenkova IV, Piruzian ES (2008c) Expression of hybrid cry3aM–licBM2 genes in transgenic potatoes (Solanum tuberosum). Plant Cell Tissue Organ Cult 92:321–325. doi:10.1007/s11240-007-9333-1
CAS
Article
Google Scholar
Sánchez-Soto AI, Saavedra-González GI, Ibarra JE, Salcedo-Hernández R, Barboza-Corona JE, Rincón-Castro D (2015) Detection of β-exotoxin synthesis in Bacillus thuringiensis using an easy bioassay with the nematode Caenorhabditis elegans. Lett Appl Microbiol 61:562–567
PubMed
Article
CAS
Google Scholar
Santiago TR, Grabowski C, Rossato M, Romeiro RS, Mizubuti ES (2015) Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control 80:14–22. doi:10.1016/j.biocontrol.2014.09.007
Article
Google Scholar
Seifinejad A, Salehi Jouzani G, Hosseinzadeh A, Abdmishani C (2008) Characterization of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biol Control 44:216–226. doi:10.1016/j.biocontrol.2007.09.010
CAS
Article
Google Scholar
Sheppard AE, Poehlein A, Rosenstiel P, Liesegang H, Schulenburg H (2013) Complete genome sequence of Bacillus thuringiensis strain 407 Cry. Genome Announc 1:e00158–e00112. doi:10.1128/genomeA.00158-12
PubMed
PubMed Central
Article
Google Scholar
Shrestha A, Sultana R, Chae JC, Kim K, Lee KJ (2015) Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur J Plant Pathol 142:577–589. doi:10.1007/s10658-015-0636-5
CAS
Article
Google Scholar
Singh M, Kumar P, Patel SK, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7
CAS
PubMed
Article
Google Scholar
Sinott MC, Cunha Filho NA, Castro LL, Lorenzon LB, Pinto NB, Capella GA, Leite FP (2012) Bacillus spp toxicity against Haemonchus contortus larvae in sheep fecal cultures. Exp Parasitol 132:103–108. doi:10.1016/j.exppara.2012.05.015
CAS
PubMed
Article
Google Scholar
Sukhumungoon P, Rattanachuay P, Hayeebilan F, Kantachote D (2013) Biodegradation of ethidium bromide by Bacillus thuringiensis isolated from soil. Afr J Microbiol Res 7:471–476. doi:10.5897/AJMR12.1642
CAS
Google Scholar
Surhio MA, Talpur FN, Nizamani SM, Amin F, Bong CW, Lee CW, Ashraf MA, Shah MR (2014) Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Adv 4:55960–55966. doi:10.1039/C4RA09465D
CAS
Article
Google Scholar
Tang Y, Zou J, Zhang L, Li Z, Ma C, Ma N (2012) Anti-fungi activities of Bacillus thuringiensis H3 chitinase and immobilized chitinase particles and their effects to rice seedling defensive enzymes. J Nanosci Nanotechnol 12:8081–8086 https://doi.org/10.1166/jnn.2012.6639
CAS
PubMed
Article
Google Scholar
Tao A, Pang F, Huang S, Yu G, Li B, Wang T (2014) Characterization of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci Tech 24:901–924. doi:10.1080/09583157.2014.904502
Article
Google Scholar
Thamer M, Al-Kubaisi AR, Zahraw Z, Abdullah HA, Hindy I, Khadium A (2013) Biodegradation of Kirkuk light crude oil by Bacillus thuringiensis, Northern of Iraq. Nat Sci 5. doi:10.4236/ns 2013 57104
Tohidfar M, Salehi Jouzani G (2008) Genetic engineering of crop plants for enhanced resistance to insects and diseases in Iran. Transgen Plant J 2:151–156
Google Scholar
Tohidfar M, Zare N, Salehi Jouzani G, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Cult 113:227–235. doi:10.1007/s11240-012-0262-2
CAS
Article
Google Scholar
Ugras S, Demirbag Z (2013) Screening antibacterial activity of entomopathogenic bacteria isolated from pests of hazelnut. Biol 68:592–598 https://www.degruyter.com/view/j/biolog.2013.68.issue-4/s11756-013-0210-6/s11756-013-0210-6.xml
CAS
Google Scholar
Urban JF Jr, Hu Y, Miller MM, Scheib U, Yiu YY, Aroian RV (2013) Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum. PLoS Negl Trop Dis 7:e2263. doi:10.1371/journal.pntd.0002263
PubMed
PubMed Central
Article
Google Scholar
Velivelli SL, De Vos P, Kromann P, Declerck S, Prestwich BD (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32:493–496. doi:10.1016/j.tibtech.2014.07.002
CAS
PubMed
Article
Google Scholar
Wang P, Zhang C, Guo M, Guo S, Zhu Y, Zheng J, Zhu L, Ruan L, Peng D, Sun M (2014) Complete genome sequence of Bacillus thuringiensis YBT-1518, a typical strain with high toxicity to nematodes. J Biotechnol 171:1–2. doi:10.1016/j.jbiotec.2013.11.023
CAS
PubMed
Article
Google Scholar
Wu S, Peng Y, Huang Z, Huang Z, Xu L, Ivan G, Guan X, Zhang L, Zou S (2015) Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos. J Basic Microbiol 55:389–397. doi:10.1002/jobm.201300501
CAS
PubMed
Article
Google Scholar
Yamashita S, Katayama H, Saitoh H, Akao T, Park YS, Mizuki E, Ohba M, Ito A (2005) Typical three-domain Cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J Biochem 138:663–672. doi:10.1093/jb/mvi177
CAS
PubMed
Article
Google Scholar
Yu Z, Luo H, Xiong J, Zhou Q, Xia L, Sun M, Li L (2014) Bacillus thuringiensis Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre mutants and synergistic activity with Cry5B to C elegans. Lett Appl Microbiol 58:511–519. doi:10.1111/lam.12219
CAS
PubMed
Article
Google Scholar
Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Sun M, Li L, Yu Z (2015) The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Invertebr Pathol 125:73–80. doi:10.1016/j.jip.2014.12.011
CAS
PubMed
Article
Google Scholar
Zhang F, Peng D, Ye X, Yu Z, Hu Z, Ruan L, Sun M (2012) In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLoS One 7:e38534. doi:10.1371/journal.pone.0038534
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang L, Yu J, Xie Y, Lin H, Huang Z, Xu L, Gelbič I, Guan X (2014) Biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) chitinase against Caenorhabditis elegans (Rhabditida: Rhabditidae). J Econom Entomol 107:551–558. doi:10.1603/EC13201
CAS
Article
Google Scholar
Zheng M, Shi J, Shi J, Wang Q, Li Y (2013) Antimicrobial effects of volatiles produced by two antagonistic bacillus strains on the anthracnose pathogen in postharvest mangos. Biol Control 65:200–206. doi:10.1016/j.biocontrol.2013.02.004
CAS
Article
Google Scholar
Zhioua E, Heyer K, Browning M, Ginsberg HS, LeBrun RA (1999) Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae). J Med Entomol 36:900–902. doi:10.1093/jmedent/36.6.900
CAS
PubMed
Article
Google Scholar
Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J (2014) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 9:e89004. doi:10.1371/journal.pone.0089004
PubMed
PubMed Central
Article
CAS
Google Scholar
Zhu Y, Shang H, Zhu Q, Ji F, Wang P, Fu J, Deng Y, Xu C, Ye W, Zheng J, Zhu L (2011) Complete genome sequence of Bacillus thuringiensis serovar finitimus strain YBT-020. J Bacteriol 193:2379–2380. doi:10.1128/JB.00267-11
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu L, Tian LJ, Zheng J, Gao QL, Wang YY, Peng DH, Ruan LF, Sun M (2015a) Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. J Biotechnol 195:108–109. doi:10.1016/j.jbiotec.2014.12.021
CAS
PubMed
Article
Google Scholar
Zhu L, Peng D, Wang Y, Ye W, Zheng J, Zhao C, Han D, Geng C, Ruan L, He J, Yu Z (2015b) Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis. Sci Rep 5. doi:10.1038/srep14129
Zhu J, Zhang Q, Cao Y, Li Q, Zhu Z, Wang L, Li P (2016) The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8. J Biotechnol 219:38–39. doi:10.1016/j.jbiotec.2015.12.016
CAS
PubMed
Article
Google Scholar
Zi-Quan Y, Qian-Lan W, Bin L, Xue Z, Zi-Niu Y, Ming S (2008) Bacillus thuringiensis crystal protein toxicity against plant-parasitic nematodes. Chinese J Agric Biotechnol 5: 13–17. doi: 10.1017/S1479236208002003
Zorzetti J, Ricietto AP, da Silva CR, Wolf IR, Vilas-Bôas GT, Neves PM, Meneguim AM, Vilas-Boas LA (2015) Genome sequence of the mosquitocidal Bacillus thuringiensis strain BR58, a biopesticide product effective against the coffee berry borer (Hypothenemus hampei). Genome Announc 3:e01232–e01215. doi:10.1128/genomeA.01232-15
PubMed
PubMed Central
Article
Google Scholar