Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 6, pp 2217–2226 | Cite as

Recent advances in genetic modification systems for Actinobacteria

  • Yu DengEmail author
  • Xi Zhang
  • Xiaojuan ZhangEmail author
Mini-Review

Abstract

Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

Keywords

Actinobacteria Genetic modifications Transformation Site-specific recombination CRISPR/Cas9 

Notes

Compliance with ethical standards

Funding

This study was funded by the National Natural Science Foundation of China (grant number 31500070, 31600044) and the Natural Science Foundation of Jiangsu Province (BK20150136, BK20150151).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Anson CE, Bibb MJ, Booker-Milburn KI, Clissold C, Haley PJ, Hopwood DA, Ichinose K, Revill WP, Stephenson GR, Surti CM (2000) Genetic engineering of Streptomyces coelicolor A3(2) for the enantioselective reduction of unnatural beta-keto-ester substrates. Angew Chem 39(1):224–227CrossRefGoogle Scholar
  2. Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ (2002) Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab Eng 4(2):138–150. doi: 10.1006/mben.2001.0217 CrossRefPubMedGoogle Scholar
  3. Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biot 39(5):661–672CrossRefGoogle Scholar
  4. Baltz RH, Hahn DR, Mchenney MA, Solenberg PJ (1992) Transposition of Tn5096 and related transposons in Streptomyces species. Gene 115(1–2):61–65. doi: 10.1016/0378-1119(92)90541-V CrossRefPubMedGoogle Scholar
  5. Baltz RH, McHenney MA, Cantwell CA, Queener SW, Solenberg PJ (1997) Applications of transposition mutagenesis in antibiotic producing streptomycetes. Antonie Van Leeuwenhoek 71(1–2):179–187CrossRefPubMedGoogle Scholar
  6. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80(1):1–43. doi: 10.1128/MMBR.00019-15 CrossRefPubMedGoogle Scholar
  7. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. doi: 10.1126/science.1138140 CrossRefPubMedGoogle Scholar
  8. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147. doi: 10.1038/417141a CrossRefPubMedGoogle Scholar
  9. Bibb MJWJ, Hopwood DA (1978) Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274(5669):398–400. doi: 10.1038/274398a0 CrossRefPubMedGoogle Scholar
  10. Blaesing F, Muhlenweg A, Vierling S, Ziegelin G, Pelzer S, Lanka E (2005) Introduction of DNA into actinomycetes by bacterial conjugation from E. coli—an evaluation of various transfer systems. J Biotechnol 120(2):146–161. doi: 10.1016/j.jbiotec.2005.06.023 CrossRefPubMedGoogle Scholar
  11. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ Jr (2006) Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 19(2):259–282. doi: 10.1128/CMR.19.2.259-282.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15(11):491–499. doi: 10.1016/j.tim.2007.10.004 CrossRefPubMedGoogle Scholar
  13. Burke J, Schneider D, Westpheling J (2001) Generalized transduction in Streptomyces coelicolor. Proc Natl Acad Sci U S A 98(11):6289–6294. doi: 10.1073/pnas.101589398 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cane DE, Watt RM (2003) Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc Natl Acad Sci U S A 100(4):1547–1551. doi: 10.1073/pnas.0337625100 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen W, Qin Z (2011) Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters. BMC Microbiol 11:243. doi: 10.1186/1471-2180-11-243 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cobb RE, Wang YJ, Zhao HM (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728. doi: 10.1016/bs.mie.2016.03.014 CrossRefPubMedGoogle Scholar
  17. Deng Y, Fong SS (2010) Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl Environ Microbiol 76(7):2098–2106. doi: 10.1128/Aem.02626-09 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13(5):570–577. doi: 10.1016/j.ymben.2011.06.007 CrossRefPubMedGoogle Scholar
  19. Deng Y, Mao Y, Zhang X (2015) Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol Prog doi. doi: 10.1002/btpr.2180 Google Scholar
  20. Du D, Wang L, Tian Y, Liu H, Tan H, Niu G (2015) Genome engineering and direct cloning of antibiotic gene clusters via phage varphiBT1 integrase-mediated site-specific recombination in Streptomyces. Sci Rep 5:8740. doi: 10.1038/srep08740 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Du L, Liu RH, Ying L, Zhao GR (2012) An efficient intergeneric conjugation of DNA from Escherichia coli to mycelia of the lincomycin-producer Streptomyces lincolnensis. Int J Mol Sci 13(4):4797–4806. doi: 10.3390/ijms13044797 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Euzeby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47(2):590–592. doi: 10.1099/00207713-47-2-590 CrossRefPubMedGoogle Scholar
  23. Fayed B, Ashford DA, Hashem AM, Amin MA, El Gazayerly ON, Gregory MA, Smith MCM (2015) Multiplexed integrating plasmids for engineering of the erythromycin gene cluster for expression in Streptomyces spp. and combinatorial biosynthesis. Appl Environ Microbiol 81(24):8402–8413. doi: 10.1128/AEM.02403-15 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A (2008) Marker removal from actinomycetes genome using Flp recombinase. Gene 419(1–2):43–47. doi: 10.1016/j.gene.2008.04.011 CrossRefPubMedGoogle Scholar
  25. Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM (2014) New applications for phage integrases. J Mol Biol 426(15):2703–2716. doi: 10.1016/j.jmb.2014.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gehring AM, Nodwell JR, Beverley SM, Losick R (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci U S A 97(17):9642–9647. doi: 10.1073/pnas.170059797 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451. doi: 10.1016/j.cell.2013.06.044 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gradman RJ, Ptacin JL, Bhasin A, Reznikoff WS, Goryshin IY (2008) A bifunctional DNA binding region in Tn5 transposase. Mol Microbiol 67(3):528–540. doi: 10.1111/j.1365-2958.2007.06056.x CrossRefPubMedGoogle Scholar
  29. Gregory MA, Till R, Smith MCM (2003) Integration site for Streptomyces phage phi BT1 and development of site-specific integrating vectors. J Bacteriol 185(17):5320–5323. doi: 10.1128/JB.185.17.5320-5323.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gronostajski RM, Sadowski PD (1985) The FLP recombinase of the Saccharomyces cerevisiae 2 microns plasmid attaches covalently to DNA via a phosphotyrosyl linkage. Mol Cell Biol 5(11):3274–3279CrossRefPubMedPubMedCentralGoogle Scholar
  31. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97(11):5995–6000CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gupta M, Till R, Smith MCM (2007) Sequences in attB that affect the ability of theta C31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res 35(10):3407–3419CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–1546. doi: 10.1073/pnas.0337542100 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hartley NM, Murphy GO, Bruton CJ, Chater KF (1994) Sequence of the essential early region of phi C31, a temperate phage of Streptomyces spp. with unusual features in its lytic development. Gene 147(1):29–40CrossRefPubMedGoogle Scholar
  35. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78(6):1804–1812. doi: 10.1128/Aem.06054-11 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212(1):77–86CrossRefPubMedGoogle Scholar
  37. Hopwood DA (1999) Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145:2183–2202. doi: 10.1099/00221287-145-9-2183 CrossRefPubMedGoogle Scholar
  38. Huang H, Zheng GS, Jiang WH, Hu HF, Lu YH (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Bioch Bioph Sin 47(4):231–243. doi: 10.1093/abbs/gmv007 CrossRefGoogle Scholar
  39. Hughes SR, Cox EJ, Bang SS, Pinkelman RJ, Lopez-Nunez JC, Saha BC, Qureshi N, Gibbons WR, Fry MR, Moser BR, Bischoff KM, Liu S, Sterner DE, Butt TR, Riedmuller SB, Jones MA, Riano-Herrera NM (2015) Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated platform. J Lab Autom 20(6):621–635. doi: 10.1177/2211068215573188 CrossRefPubMedGoogle Scholar
  40. Hwang KS, Kim HU, Charusanti P, Palsson BO, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32(2):255–268. doi: 10.1016/j.biotechadv.2013.10.008 CrossRefPubMedGoogle Scholar
  41. Aidoo DA, Barrett K, Vining LC (1990) Plasmid transformation of Streptomyces venezuelae: modified procedures used to introduce the gene(s) for p-aminobenzoate synthase. J Gen Microbiol 136(4):657–662. doi: 10.1099/00221287-136-4-657 CrossRefPubMedGoogle Scholar
  42. Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, Kim BG, Roe JH, Kim SC, Smith CP, Cho BK (2016) The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 7:11605. doi: 10.1038/ncomms11605 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, Smith MCM (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res 34(3). doi: 10.1093/nar/gnj019
  44. Komatsua M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107(6):2646–2651. doi: 10.1073/pnas.0914833107 CrossRefGoogle Scholar
  45. Lacroix C, Giovannini D, Combe A, Bargieri DY, Spath S, Panchal D, Tawk L, Thiberge S, Carvalho TG, Barale JC, Bhanot P, Menard R (2011) FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei. Nat Protoc 6(9):1412–1428. doi: 10.1038/nprot.2011.363 CrossRefPubMedGoogle Scholar
  46. Landgraf D, Huh D, Hallacli E, Lindquist S (2016) Scarless gene tagging with one-step transformation and two-step selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe. PLoS One 11(10):e0163950. doi: 10.1371/journal.pone.0163950 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lanka E, Wilkins BM (1995) DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64:141–169. doi: 10.1146/annurev.bi.64.070195.001041 CrossRefPubMedGoogle Scholar
  48. Larson MH, Gilbert LA, Wang XW, Lim WA, Weissman JS, Qi LS (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8(11):2180–2196. doi: 10.1038/nprot.2013.132 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lee CA, Grossman AD (2007) Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis. J Bacteriol 189(20):7254–7261. doi: 10.1128/Jb.00932-07 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lee EC, Gumport RI, Gardner JF (1990) Genetic analysis of bacteriophage lambda integrase interactions with arm-type attachment site sequences. J Bacteriol 172(3):1529–1538CrossRefPubMedPubMedCentralGoogle Scholar
  51. Leibig M, Krismer B, Kolb M, Friede A, Gotz F, Bertram R (2008) Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol 74(5):1316–1323. doi: 10.1128/AEM.02424-07 CrossRefPubMedGoogle Scholar
  52. Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR (2016) Evolution and ecology of actinobacteria and their bioenergy applications. Annu Rev Microbiol 70:235–254CrossRefPubMedGoogle Scholar
  53. Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 53(3):299–303CrossRefPubMedGoogle Scholar
  54. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007. doi: 10.1038/celldisc.2015.7 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Macneil DJ (1987) Introduction of plasmid DNA into Streptomyces lividans by electroporaion. FEMS Microbiol Lett 42(2–3):239–244CrossRefGoogle Scholar
  56. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2016) Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 42(2):209–221. doi: 10.3109/1040841X.2014.917069 PubMedGoogle Scholar
  57. Matsushima P, Broughton MC, Turner JR, Baltz RH (1994) Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa—effects of chromosomal insertions on macrolide A83543 production. Gene 146(1):39–45. doi: 10.1016/0378-1119(94)90831-1 CrossRefPubMedGoogle Scholar
  58. Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171(6):3583–3585CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nawani N, Aigle B, Mandal A, Bodas M, Ghorbel S, Prakash D (2013) Actinomycetes: role in biotechnology and medicine. Biomed Res Int 2013:687190. doi: 10.1155/2013/687190 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Negoda A, Xian M, Reusch RN (2007) Insight into the selectivity and gating functions of Streptomyces lividans KcsA. Proc Natl Acad Sci U S A 104(11):4342–4346. doi: 10.1073/pnas.0700495104 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384CrossRefPubMedPubMedCentralGoogle Scholar
  62. Newman DJCG (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477. doi: 10.1021/np068054v CrossRefPubMedGoogle Scholar
  63. Novella IS, Marin I, Sanchez J (1996) Restriction analysis of actinomycetes chromosomal DNA. Can J Microbiol 42(2):201–206CrossRefPubMedGoogle Scholar
  64. Olson DG, Lynd LR (2012) Transformation of Clostridium thermocellum by electroporation. Methods Enzymol 510:317–330. doi: 10.1016/B978-0-12-415931-0.00017-3 CrossRefPubMedGoogle Scholar
  65. Olson ER, Chung ST (1988) Transposon Tn4556 of Streptomyces fradiae: nucleotide sequence of the ends and the target sites. J Bacteriol 170(4):1955–1957CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ortiz-Ortiz L, Bojalil LF, Yakoleff V (1984) Biological, biochemical, and biomedical aspects of actinomycetes. Academic Press, OrlandoGoogle Scholar
  67. Petzke L, Luzhetskyy A (2009) In vivo Tn5-based transposon mutagenesis of Streptomycetes. Appl Microbiol Biotechnol 83(5):979–986. doi: 10.1007/s00253-009-2047-z CrossRefPubMedGoogle Scholar
  68. Pidcock KA, Montenecourt BS, Sands JA (1985) Genetic recombination and transformation in protoplasts of Thermomonospora fusca. Appl Environ Microbiol 50(3):693–695PubMedPubMedCentralGoogle Scholar
  69. Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by electroporation. Appl Environ Microbiol 61(1):352–356PubMedPubMedCentralGoogle Scholar
  70. Relman DA, Schmidt TM, MacDermott RP, Falkow S (1992) Identification of the uncultured bacillus of Whipple's disease. N Engl J Med 327(5):293–301. doi: 10.1056/NEJM199207303270501 CrossRefPubMedGoogle Scholar
  71. Reuther J, Gekeler C, Tiffert Y, Wohlleben W, Muth G (2006) Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 61(2):436–446CrossRefPubMedGoogle Scholar
  72. Reznikoff WS (2008) Transposon Tn5. Annu Rev Genet 42:269–286. doi: 10.1146/annurev.genet.42.110807.091656 CrossRefPubMedGoogle Scholar
  73. Rodriguez E, Hu Z, Ou S, Volchegursky Y, Hutchinson CR, McDaniel R (2003) Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. J Ind Microbiol Biotechnol 30(8):480–488. doi: 10.1007/s10295-003-0045-1 CrossRefPubMedGoogle Scholar
  74. Rutherford K, Van Duyne GD (2014) The ins and outs of serine integrase site-specific recombination. Curr Opin Struct Biol 24:125–131. doi: 10.1016/j.sbi.2014.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355. doi: 10.1038/nbt.2842 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5(5):521–527CrossRefPubMedGoogle Scholar
  77. Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392CrossRefPubMedGoogle Scholar
  78. Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32(20):6086–6095. doi: 10.1093/nar/gkh941 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Siegl T, Luzhetskyy A (2012) Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek 102(3):503–516. doi: 10.1007/s10482-012-9795-y CrossRefPubMedGoogle Scholar
  80. Siewers V (2014) An overview on selection marker genes for transformation of Saccharomyces cerevisiae. Methods Mol Biol 1152:3–15. doi: 10.1007/978-1-4939-0563-8_1 CrossRefPubMedGoogle Scholar
  81. Smith MCM, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44(2):299–307CrossRefPubMedGoogle Scholar
  82. Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100(10):6133–6138. doi: 10.1073/pnas.0931429100 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Suarez JE, Chater KF (1980a) DNA cloning in Streptomyces: a bifunctional replicon comprising pBR322 inserted into a Streptomyces phage. Nature 286(5772):527–529CrossRefPubMedGoogle Scholar
  84. Suarez JE, Chater KF (1980b) Polyethylene glycol-assisted transfection of Streptomyces protoplasts. J Bacteriol 142(1):8–14PubMedPubMedCentralGoogle Scholar
  85. Theodosiou NA, Xu T (1998) Use of FLP/FRT system to study Drosophila development. Methods 14(4):355–365. doi: 10.1006/meth.1998.0591 CrossRefPubMedGoogle Scholar
  86. Thoma L, Vollmer B, Muth G (2016) Fluorescence microscopy of Streptomyces conjugation suggests DNA-transfer at the lateral walls and reveals the spreading of the plasmid in the recipient mycelium. Environ Microbiol 18(2):598–608. doi: 10.1111/1462-2920.13027 CrossRefPubMedGoogle Scholar
  87. Thorpe HM, Smith MCM (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95(10):5505–5510CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4(9):1020–1029. doi: 10.1021/acssynbio.5b00038 CrossRefPubMedGoogle Scholar
  89. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548. doi: 10.1128/MMBR.00005-07 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Volff JN, Altenbuchner J (1997) High frequency transposition of the Tn5 derivative Tn5493 in Streptomyces lividans. Gene 194(1):81–86CrossRefPubMedGoogle Scholar
  91. Vrancken K, Van Mellaert L, Anne J (2010) Cloning and expression vectors for a gram-positive host, Streptomyces lividans. Methods Mol Biol 668:97–107. doi: 10.1007/978-1-60761-823-2_6 CrossRefPubMedGoogle Scholar
  92. Weaden J, Dyson P (1998) Transposon mutagenesis with IS6100 in the avermectin-producer Streptomyces avermitilis. Microbiology 144(Pt 7):1963–1970. doi: 10.1099/00221287-144-7-1963 CrossRefPubMedGoogle Scholar
  93. Widenbrant EM, Kao CM (2007) Introduction of the foreign transposon Tn4560 in Streptomyces coelicolor leads to genetic instability near the native insertion sequence IS1649. J Bacteriol 189(24):9108–9116. doi: 10.1128/JB.00983-07 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wright G (2014) Perspective: synthetic biology revives antibiotics. Nature 509(7498):S13. doi: 10.1038/509S13a CrossRefPubMedGoogle Scholar
  95. Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z, Tao M (2017) Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl Environ Microbiol doi. doi: 10.1128/AEM.02889-16 Google Scholar
  96. Zhang L, Ou XJ, Zhao GP, Ding XM (2008) Highly efficient in vitro site-specific recombination system based on Streptomyces phage phi BT1 integrase. J Bacteriol 190(19):6392–6397. doi: 10.1128/JB.00777-08 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National Engineering Laboratory for Cereal Fermentation Technology (NELCF)Jiangnan UniversityWuxiChina

Personalised recommendations